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1 Liapunov exponents for 1-D maps #02

Statement: Liapunov exponents for 1-D maps #02

Compute the Liapunov exponent, and produce a figure analog to figure 10.5.2 in Strogatz’s book (see example

10.5.3 there) for the 1-D maps xn+1 = f(xn) below. In all the cases, given the range of r selected, justify the

selected range for x.

Meaning of “justify”. Show that the x-region is such that it may contain an attractor, because either: (a) It is trapping; an orbit

starting there stays there; or (b) Orbits starting outside the region diverge to infinity, so that any attractor has to be inside.

1. The cosine map f(x) = r cos(x), with −5 ≤ r ≤ 5 and −5 ≤ x ≤ 5.

2. The quartic map f(x) = r (1− (2x− 1)4), with 0 ≤ r ≤ 1 and 0 ≤ x ≤ 1.

3. The cusp075 map f(x) = r (1− zµ), with 0 ≤ r ≤ 1 and 0 ≤ x ≤ 1, where z = |2x− 1| and µ = 3/4.

Important. df/dx for this map involves zµ−1. To avoid a potential division by zero, when calculating use z =

|2x− 1|+ ε, where ε is very small; e.g.: ε = 10−200.

In all cases, plot not just the region listed above, but do a detail of the r-ranges where the exponent transitions

from negative to positive. See also the optional task below, after the hints.

Hints and related.

h1. The process to follow to calculate the Liapunov exponent is explained in example 10.5.3 of Strogatz book

[also in the lectures]. At any rate, see the sample/sketch MatLab script at the end of the problem statement.

h2. If you use MatLab, “vectorize” the operation, so that you do all the r’s simultaneously.

h3. In MatLab the command “print -dpng FigureName” added to the script will save the figure as a small png file

— it is also more reliable saving the figure using the GUI in the figure window. Please be careful with the

figure sizes, do not upload monster size answers. Just to give you a reference: in my answer the pictures

take about 30kb each.

Optional task. For the case of the cusp075 map, plot the Liapunov exponent versus r for the region where the

Liapunov exponent transitions from negative to positive — this is, roughly 0.52 < r < 0.68. Use for this a

program following the outline of the “sample/sketch MatLab script” below. Run the program a few times (without

changing any parameters) and do a few plots. What do you see? (you should be seeing something that “should

not” be, remember that you are looking at a deterministic system). Explain why you see what you see. Note:

The explanation is simple and clean. If you find yourself making convoluted arguments, you are on the wrong track!

Hints: (i) Do an orbit/bifurcation diagram for the map. (ii) Initialize the iterations that compute the Liapunov

exponent with x0 = 0.51. (iii) Initialize the iterations that compute the Liapunov exponent with x0 = 0.01.
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Sample/sketch MatLab script. These are the parameters that you will need to assign values to:

r1 = Lower value of the parameter r range to explore.

r2 = Upper value of the parameter r range to explore.

N = Number of r-values to use between r1 and r2. Because the Liapunov exponent as a function of r can be

very “wiggly”, take N large, say: N = 1000, or larger.

x1 = Lower value of x considered.

x2 = Upper value of x considered.

nb = Number of map iterations before the calculation starts. This should be a fairly large number,

say nb = 5000, to allow the iterates to settle on the attractor.

np = Number of iterations used to calculate the Liapunov exponent. Again, a fairly large number, to

obtain an accurate calculation. Note that the size of the error is, typically, O(1/np)!

In addition, you will need two sub-scripts, y = Fun(r, x) and y = dFun(r, x), which compute the function f(x),

and the absolute value of its derivative, |df/dx|. The basic script is then:

r = r1 + (r2 - r1)*(0:N)/N;

x = x1 + (x2 -x1)*rand(size(r)); % This initializes the iteration.

for j=1:nb; x = Fun(r, x); end; % Iterate nb times to approach the attractor.

nf = nb + np;

le = zeros(size(r)); % Will contain the Liapunov exponent for each value in the array r.

for j=(nb+1):nf

x = Fun(r, x);

le = le + (1/np)*log(dFun(r, x));

end

Now all that remains to do is plot le versus r.

2 Newton’s method in the complex plane #01
Statement: Newton’s method in the complex plane #01

Suppose that you want to solve an equation, g(x) = 0. Then you can use Newton’s method, which is as follows:

Assume that you have a “reasonable” guess, x0, for the value

of a root. Then the sequence xn+1 = f(xn), n ≥ 0, where f(x) = x−
g(x)

g′(x)
, (2.1)

converges (very fast) to the root.

Remark 2.1 (The idea). Assume an approximate solution g(xa) ≈ 0. Then write xb = xa + δx to improve it,

where δx is small. Then 0 = g(xa + δx) ≈ g(xa) + g′(xa) δx ⇒ δ x ≈ − g(xa)
g′(xa)

, and (2.1) follows.

Of course, if x0 is not close to a root, the method may not converge. Even if it converges, it may converge to

a root that is far away from x0, not necessarily the closest root. In this problem we investigate the behavior of

Newton’s method in the complex plane, for arbitrary starting points. ♣

Consider iterations of the map generated by Newton’s

method for the roots of z3 − 1 = 0. i.e.: zn+1 = f(zn) =

(
2

3
+

1

3 z3n

)
zn, n ≥ 0, (2.2)

where 0 < |z0| <∞ is arbitrary, and the zn are

complex numbers.

Note that ζ1 = 1, ζ2 = ei 2π/3 =
1

2
(−1 + i

√
3), and ζ3 = ei 4π/3 =

1

2
(−1− i

√
3), (2.3)

are the roots

of z3 = 1.
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Your tasks: Write a computer program to calculate the orbits {zn}∞n=0. Then, for every initial point z0, draw a

colored dot at the position of z0, where the colors are picked as follows:

zn → ζ1, green. zn → ζ2, red. zn → ζ3, blue. No convergence, black. (2.4)

What do you see? Do blow ups of the limit regions between zones.

Hints and practical numerical considerations.

h1. Divide the region where the initial data z0 will be picked [I suggest the square −2 ≤ Re(z0), Im(z0) ≤ 2]

into pixels, then pick a z0 at the center of each pixel, and color the pixel according to (2.4).

h2. If you use MatLab, do not plot points. As suggested in item h1 plot pixels — use the command image(x, y, C)

to plot, where x = Re(z0) and y = Im(z0). Why? Because using points leaves a lot of unpainted space in

the figure, and gives huge file sizes if you use enough pixels to get a good picture.

h3. Deciding convergence. Deciding that the sequence converges is easy: once zn gets “close enough” to one of

the roots, then the very design of Newton’s method guarantees convergence. Thus, given a z0, compute zN
for some large N , and check if |zN − ζj| < δ for one of the roots and some “small” tolerance δ — which does

not have to be very small, in fact δ = 0.25 is good enough. If this criteria is not satisfied for any of the roots,

then classify the sequence starting at z0 as “non-convergent”.

You can get reasonable pictures with N = 50 iterations on a 150 × 150 grid — a larger N is needed when

refining near the boundary between zones. For the answer I used a 500 × 500 grid and N = 100 iterations

— which I increased to N = 200 and N = 300 for the blow ups of details.

h4. Compute in parallel. If you use MatLab, make sure to do all the sequences (one for each pixel) in parallel,

using vector/matrix operations. This is much faster than a “for loop”.

h5. Avoid division by zero. Note that (2.2) ceases to make sense if zn = 0 — classify this as non-convergence.

This can cause a problem if you are computing all the sequences in parallel, because this requires all of them

to be computed from z0 to zN . One way to get around this (in MatLab) is as follows: Place all the iterates in

a complex matrix Zn, where the entry (p, q) corresponds to zn for the sequence starting in the (p, q) pixel.

Then, before computing the next iterate, execute: Zn = Zn + del*(Zn == 0), where del = 1e-30. † After

this sequences with zn = 0 will produce a very large zn+1, which is guaranteed not return to the vicinity of

the roots ζj for many iterations (more than 300), resulting in “effective” non-convergence. ‡

† This replaces zero entries in Zn by del, because the logical operator (Zn == 0) yields zero for all non-zero entries in Zn,

and one for zero entries.

‡ The result will be zn+1 ≈ (1/3)1060, while for zn large (2.2) reduces to zn+1 ≈ (2/3) zn. Hence returning to

zn+M = O(1) requires, roughly, (2/3)M 1060 = O(1).

THE END.


