Problem Set Number 07, (18.353/12.006/2.050)j MIT (Fall 2023)

Rodolfo R. Rosales (MIT, Math. Dept., room 2-337, Cambridge, MA 02139)

November 29, 2023
Due December 5, 2023 (turn it in via the canvas course website).
I may add one more problem before Friday December 1, noon. Check to see.

Contents

1 Liapunov exponents for 1-D maps \#02
2 Newton's method in the complex plane \#01

1 Liapunov exponents for 1-D maps \#02

Statement: Liapunov exponents for 1-D maps \#02

Compute the Liapunov exponent, and produce a figure analog to figure 10.5.2 in Strogatz's book (see example 10.5.3 there) for the 1-D maps $x_{n+1}=f\left(x_{n}\right)$ below. In all the cases, given the range of r selected, justify the selected range for x.
Meaning of "justify". Show that the x-region is such that it may contain an attractor, because either: (a) It is trapping; an orbit starting there stays there; or (b) Orbits starting outside the region diverge to infinity, so that any attractor has to be inside.

1. The cosine map $f(x)=r \cos (x)$, with $-5 \leq r \leq 5$ and $-5 \leq x \leq 5$.
2. The quartic map $f(x)=r\left(1-(2 x-1)^{4}\right)$, with $0 \leq r \leq 1$ and $0 \leq x \leq 1$.
3. The cusp075 map $f(x)=r\left(1-z^{\mu}\right)$, with $0 \leq r \leq 1$ and $0 \leq x \leq 1$, where $z=|2 x-1|$ and $\mu=3 / 4$. Important. $\mathrm{d} f / \mathrm{d} x$ for this map involves $z^{\mu-1}$. To avoid a potential division by zero, when calculating use $z=$ $|\mathbf{2 x}-1|+\epsilon$, where ϵ is very small; e.g.: $\epsilon=\mathbf{1 0}^{\mathbf{- 2 0 0}}$.

In all cases, plot not just the region listed above, but do a detail of the r-ranges where the exponent transitions from negative to positive. See also the optional task below, after the hints.

Hints and related.

h1. The process to follow to calculate the Liapunov exponent is explained in example 10.5.3 of Strogatz book [also in the lectures]. At any rate, see the sample/sketch MatLab script at the end of the problem statement.
h2. If you use MatLab, "vectorize" the operation, so that you do all the \boldsymbol{r} 's simultaneously.
h3. In MatLab the command "print -dpng FigureName" added to the script will save the figure as a small png file - it is also more reliable saving the figure using the GUI in the figure window. Please be careful with the figure sizes, do not upload monster size answers. Just to give you a reference: in my answer the pictures take about 30 kb each.

Optional task. For the case of the cusp075 map, plot the Liapunov exponent versus \boldsymbol{r} for the region where the Liapunov exponent transitions from negative to positive - this is, roughly $\mathbf{0 . 5 2}<r<\mathbf{0 . 6 8}$. Use for this a program following the outline of the "sample/sketch MatLab script" below. Run the program a few times (without changing any parameters) and do a few plots. What do you see? (you should be seeing something that "should not" be, remember that you are looking at a deterministic system). Explain why you see what you see. Note: The explanation is simple and clean. If you find yourself making convoluted arguments, you are on the wrong track! Hints: (i) Do an orbit/bifurcation diagram for the map. (ii) Initialize the iterations that compute the Liapunov exponent with $\boldsymbol{x}_{\mathbf{0}}=\mathbf{0 . 5 1}$. (iii) Initialize the iterations that compute the Liapunov exponent with $\boldsymbol{x}_{\mathbf{0}}=\mathbf{0 . 0 1}$.

Sample/sketch MatLab script. These are the parameters that you will need to assign values to:
$r 1=$ Lower value of the parameter r range to explore.
$\mathrm{r} 2=$ Upper value of the parameter r range to explore.
$\mathrm{N}=$ Number of r -values to use between r 1 and r 2 . Because the Liapunov exponent as a function of r can be very "wiggly", take N large, say: $\mathrm{N}=1000$, or larger.
$\mathrm{x} 1=$ Lower value of x considered.
$\mathrm{x} 2=$ Upper value of x considered.
$\mathrm{nb}=$ Number of map iterations before the calculation starts. This should be a fairly large number, say $n b=5000$, to allow the iterates to settle on the attractor.
$\mathrm{np}=$ Number of iterations used to calculate the Liapunov exponent. Again, a fairly large number, to obtain an accurate calculation. Note that the size of the error is, typically, $O(\mathbf{1} / \boldsymbol{n p})$!
In addition, you will need two sub-scripts, $y=\operatorname{Fun}(r, x)$ and $y=d F u n(r, x)$, which compute the function $\boldsymbol{f}(\boldsymbol{x})$, and the absolute value of its derivative, $|\mathbf{d} \boldsymbol{f} / \mathbf{d} \boldsymbol{x}|$. The basic script is then:

```
\(r=r 1+(r 2-r 1)^{*}(0: N) / N\);
\(x=x 1+(x 2-x 1)^{*}\) rand(size(r)); \% This initializes the iteration.
for \(\mathrm{j}=1: \mathrm{nb} ; \mathrm{x}=\operatorname{Fun}(\mathrm{r}, \mathrm{x})\); end; \% Iterate nb times to approach the attractor.
\(\mathrm{nf}=\mathrm{nb}+\mathrm{np}\);
le \(=\) zeros \((\operatorname{size}(r)) ; \%\) Will contain the Liapunov exponent for each value in the array \(r\).
for \(j=(n b+1): n f\)
    \(x=\operatorname{Fun}(r, x)\);
    \(l e=l e+(1 / n p)^{*} \log (d F u n(r, x)) ;\)
```

end

Now all that remains to do is plot le versus r.

2 Newton's method in the complex plane \#01 Statement: Newton's method in the complex plane \#01

Suppose that you want to solve an equation, $g(x)=0$. Then you can use Newton's method, which is as follows: Assume that you have a "reasonable" guess, x_{0}, for the value of a root. Then the sequence $\boldsymbol{x}_{\boldsymbol{n + 1}}=\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{n}}\right), \boldsymbol{n} \geq \mathbf{0}$, where converges (very fast) to the root.

$$
\begin{equation*}
f(x)=x-\frac{g(x)}{g^{\prime}(x)} \tag{2.1}
\end{equation*}
$$

Remark 2.1 (The idea). Assume an approximate solution $g\left(x_{a}\right) \approx 0$. Then write $x_{b}=x_{a}+\delta x$ to improve it, where δx is small. Then $0=g\left(x_{a}+\delta x\right) \approx g\left(x_{a}\right)+g^{\prime}\left(x_{a}\right) \delta x \Rightarrow \delta x \approx-\frac{g\left(x_{a}\right)}{g^{\prime}\left(x_{a}\right)}$, and (2.1) follows.
Of course, if x_{0} is not close to a root, the method may not converge. Even if it converges, it may converge to a root that is far away from x_{0}, not necessarily the closest root. In this problem we investigate the behavior of Newton's method in the complex plane, for arbitrary starting points.

Consider iterations of the map generated by Newton's method for the roots of $\boldsymbol{z}^{\mathbf{3}}-\mathbf{1}=\mathbf{0}$. i.e.: where $\mathbf{0}<\left|\boldsymbol{z}_{\mathbf{0}}\right|<\infty$ is arbitrary, and the $\boldsymbol{z}_{\boldsymbol{n}}$ are

$$
\begin{equation*}
z_{n+1}=f\left(z_{n}\right)=\left(\frac{2}{3}+\frac{1}{3 z_{n}^{3}}\right) z_{n}, \quad n \geq 0 \tag{2.2}
\end{equation*}
$$

complex numbers.
Note that are the roots
of $\boldsymbol{z}^{3}=\mathbf{1}$.

Your tasks: Write a computer program to calculate the orbits $\left\{z_{n}\right\}_{n=\mathbf{0}}^{\infty}$. Then, for every initial point $\boldsymbol{z}_{\mathbf{0}}$, draw a colored dot at the position of \boldsymbol{z}_{0}, where the colors are picked as follows:

$$
\begin{equation*}
z_{n} \rightarrow \zeta_{1}, \text { green. } \quad z_{n} \rightarrow \zeta_{2}, \text { red. } \quad z_{n} \rightarrow \zeta_{3}, \text { blue. } \quad \text { No convergence, black. } \tag{2.4}
\end{equation*}
$$

What do you see? Do blow ups of the limit regions between zones.

Hints and practical numerical considerations.
h1. Divide the region where the initial data $\boldsymbol{z}_{\mathbf{0}}$ will be picked [I suggest the square $\mathbf{- 2} \leq \operatorname{Re}\left(\boldsymbol{z}_{\mathbf{0}}\right), \operatorname{Im}\left(\boldsymbol{z}_{\mathbf{0}}\right) \leq \mathbf{2}$] into pixels, then pick a $\boldsymbol{z}_{\mathbf{0}}$ at the center of each pixel, and color the pixel according to (2.4).
h2. If you use MatLab, do not plot points. As suggested in item $\mathbf{h 1}$ plot pixels - use the command image (x, y, C) to plot, where $\boldsymbol{x}=\operatorname{Re}\left(z_{0}\right)$ and $\boldsymbol{y}=\operatorname{Im}\left(\boldsymbol{z}_{0}\right)$. Why? Because using points leaves a lot of unpainted space in the figure, and gives huge file sizes if you use enough pixels to get a good picture.
h3. Deciding convergence. Deciding that the sequence converges is easy: once $\boldsymbol{z}_{\boldsymbol{n}}$ gets "close enough" to one of the roots, then the very design of Newton's method guarantees convergence. Thus, given a \boldsymbol{z}_{0}, compute \boldsymbol{z}_{N} for some large N, and check if $\left|z_{N}-\boldsymbol{\zeta}_{\boldsymbol{j}}\right|<\boldsymbol{\delta}$ for one of the roots and some "small" tolerance $\boldsymbol{\delta}$ - which does not have to be very small, in fact $\boldsymbol{\delta}=\mathbf{0 . 2 5}$ is good enough. If this criteria is not satisfied for any of the roots, then classify the sequence starting at $\boldsymbol{z}_{\mathbf{0}}$ as "non-convergent".
You can get reasonable pictures with $N=\mathbf{5 0}$ iterations on a $\mathbf{1 5 0} \times \mathbf{1 5 0}$ grid - a larger N is needed when refining near the boundary between zones. For the answer I used a $\mathbf{5 0 0} \times \mathbf{5 0 0}$ grid and $N=100$ iterations - which I increased to $N=200$ and $N=300$ for the blow ups of details.
h4. Compute in parallel. If you use MatLab, make sure to do all the sequences (one for each pixel) in parallel, using vector/matrix operations. This is much faster than a "for loop".
h5. Avoid division by zero. Note that (2.2) ceases to make sense if $\boldsymbol{z}_{\boldsymbol{n}}=\mathbf{0}$ - classify this as non-convergence. This can cause a problem if you are computing all the sequences in parallel, because this requires all of them to be computed from $\boldsymbol{z}_{\mathbf{0}}$ to $\boldsymbol{z}_{\boldsymbol{N}}$. One way to get around this (in MatLab) is as follows: Place all the iterates in a complex matrix $\mathbf{Z n}$, where the entry $(\boldsymbol{p}, \boldsymbol{q})$ corresponds to $\boldsymbol{z}_{\boldsymbol{n}}$ for the sequence starting in the $(\boldsymbol{p}, \boldsymbol{q})$ pixel. Then, before computing the next iterate, execute: $\mathbf{Z n}=\mathbf{Z n}+\mathbf{d e l}^{*}\left(\mathbf{Z n}=\mathbf{=} \mathbf{0}\right.$), where del $=\mathbf{1 e} \mathbf{e} \mathbf{3 0}$. † After this sequences with $\boldsymbol{z}_{\boldsymbol{n}}=\mathbf{0}$ will produce a very large $\boldsymbol{z}_{\boldsymbol{n}+\boldsymbol{1}}$, which is guaranteed not return to the vicinity of the roots $\boldsymbol{\zeta}_{\boldsymbol{j}}$ for many iterations (more than 300), resulting in "effective" non-convergence. ${ }^{\ddagger}$
\dagger This replaces zero entries in $\mathbf{Z n}$ by del, because the logical operator ($\mathbf{Z n}=\mathbf{=} \mathbf{0}$) yields zero for all non-zero entries in $\mathbf{Z n}$, and one for zero entries.
\ddagger The result will be $z_{n+1} \approx(\mathbf{1} / 3) 10^{60}$, while for z_{n} large (2.2) reduces to $z_{n+1} \approx(\mathbf{2} / \mathbf{3}) z_{n}$. Hence returning to $z_{n+M}=O(1)$ requires, roughly, $(2 / 3)^{M} 10^{60}=O(1)$.

THE END.

