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1 Homoclinic bifurcation with a computer #01
Statement: Homoclinic bifurcation with a computer #01

Consider the system ẋ = µx+ y − (2µ+ 1)x2 and ẏ = −x+ µy + (2− µ)x2, (1.1)

where µ is a parameter. For this system:

(1) Find and analyze/classify the critical points.

(2) Using a computer, show that a supercritical Hopf bifurcation happens at µ = 0.

(3) Using a computer, show that an homoclinic bifurcation happens for 0 < µ = µc, where µc is very small.

You can get a rough idea of “how small is small” by recalling that the “radius” of the Hopf bifurcation limit cycle grows

like the square root of the parameter deviation from the onset. Hence, in this case it should be C
√
µc ≈ distance from

the origin to the saddle, where C is a constant. Of course, you do not know C, so this estimate can be off by some factor,

probably less than 10. Do this estimate before doing (3).

(4) Find the approximate value of µc.

(5) Illustrate your results with phase plane plots in the region −0.4 < x, y < 0.6.

Hint: The nonlinear terms determine the nature of the bifurcation: supercritical if they stabilize, subcritical if they

de-stabilize. Hence check the behavior of the orbits near the critical point for µ = 0, to see if the nonlinear terms

stabilize or de-stabilize.

Suggestions for computation. Use PHPLdemoB2, which allows for easy parameter searches. To get precisely controlled plots,

you can use PHPLplot or PHPLplot v2, which are a bit less user friendly, but allow precise control. Note that, for µ small, the

radial dynamics near the origin is slow, thus you may need “large” integration times ... do not use the default integration times

and tolerances in the scripts.

2 Hopf bifurcation using a computer #01
Statement: Hopf bifurcation using a computer #01

For the system ẋ = y + µx and ẏ = −x+ µy − x2 y, (2.1)

a Hopf bifurcation occurs at the origin when µ = 0.

Using a computer, plot the phase portrait and determine whether the bifurcation is subcritical or supercritical.
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For small values of µ, verify that the limit cycle is nearly circular. Then measure the period and radius of the

limit cycle, and show that the radius R scales with µ as predicted by theory.

Hints: (a) The nonlinear terms determine the nature of the bifurcation: supercritical if they stabilize, subcritical if

they de-stabilize. Hence check the behavior of the orbits near the critical point for a |µ| � 1 to see if the nonlinear

terms stabilize or de-stabilize. (b) In the subcritical case the limit cycle is unstable, hence hard to compute forward

in time. However, if you run the system backwards in time the solutions converge to the limit cycle!

Suggestions for computation. For the calculation of the limit cycles, and measuring the radius and period, PHPLdemoB is not

the best tool (because it depends on the mouse to input the initial point on an orbit. For this you should use PHPLplot or

PHPLplot v2, which are a bit less user friendly, but allow precise control of the orbits. With them you can select the initial data

(say, give x = x0 > 0 along y = 0) and play with x0 till you hit the limit cycle — set BF = 0, so the orbit is computed forward

only. Then x0 gives you the “radius”. To compute the period, play with t f so the orbit barely closes — alternatively: “hack” the

script so it outputs the raw data from the ode solver, [T, Y], which will allow you to compute the period and radius very accurately.

3 Limit cycle bifurcation with a computer #01
Statement: Limit cycle bifurcation with a computer #01

The system ẋ = y/δ and ẏ = (2µy − (1 + µ2)x+ x2 (µx− y))/δ, (3.1)

where δ = 1 + x2, undergoes a

supercritical Hopf bifurcation at µ = 0. Beyond that, as µ increases, while the critical points at (x, y) = (±x0, 0)

(x0 =
√
µ+ 1/µ) move towards the origin. For µ = µc, 0.3 < µc < 0.4, another bifurcation occurs. Using a

computer:

(1) Describe what happens at µ = µc.

(2) Find the nature of all the critical points of the system.

(3) Ascertain the value of µc with two significant digits.

Illustrate your conclusions with three phase plane portraits in the region −3 < x, y < 3, one for µ < µc, one

for µ > µc, and one for µ ≈ µc.

Remark #1. Note that the system has the symmetry (x, y)→ (−x, −y).
Suggestions for computation. Since the problem involves investigating a situation as a parameter varies, with an equation with

many terms, PHPLdemoB is not the best tool (impractical). Instead, I suggest that you use PHPLdemoB2, which will allow

you to do µ “sweeps” efficiently. Once you know well what happens, to produce “neat” final plots, you could use PHPLplot or

PHPLplot v2, which are less user friendly than PHPLdemoB2, but allow precise control of the orbits.

4 Orbit diagrams for 1-D maps #01

Statement: Orbit diagrams for 1-D maps #01

Compute the orbit diagrams 1 for the 1-D maps xn+1 = f(xn) below. Furthermore, in all the cases perform the

following task: given the range of r selected, justify the selected range for x.

Meaning of “justify”. Show that the x-region is such that it may contain an attractor, because either: (a) It is trapping; an orbit

starting there stays there; or (b) Orbits starting outside the region diverge to infinity, so that any attractor has to be inside.

1. The sine map f(x) = r sin(x), with −5 ≤ r ≤ 5 and −5 ≤ x ≤ 5.

1 An orbit diagram is what figure 10.2.7 in Strogatz’s book shows.
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2. The cubic map f(x) = r x− x3, with 0 ≤ r ≤ 3 and −2 ≤ x ≤ 2.

3. The exponential #1 map f(x) = x er (1−x), with 1 ≤ r ≤ 4 and 0 ≤ x ≤ 0.25 e3 = 5.0213 . . ..

4. The tent map f(x) = r (1− |2x− 1|), with 0 ≤ r ≤ 1 and 0 ≤ x ≤ 1. At first sight the tent map orbit

diagram may look rather plain. However, do a blow up of the region in the tent map orbit diagram given by:

4b. 0.5 ≤ r ≤ 0.6 and 0.492 ≤ x ≤ 0.501.

4c. 0.5 ≤ r ≤ 0.525 and 0.4999 ≤ x ≤ 0.5001.

Note that doing these blow-ups will require to plot far more iterates than for the main plot, because you will

not be plotting the whole attractor, but just a small region within it, which means most points will be outside

the plotted region.

Process: Pick a grid in r; say rm = r0 + m∆r, for some small ∆r, covering the desired range for r. Then, for

every rm, take a random starting point x0, and calculate the resulting xn for a large number of iterates 1 ≤ n ≤ N .

Finally: throw away the first few hundred iterates (to eliminate transients as the attractor is approached) and plot

the rest as points (rm, xn) in a 2-D diagram.

Note: if you use MatLab, “vectorize” the operation, so that you do all the r simultaneously (MatLab will be very

slow if you use a “for loop” in both n and m).

Also, in MatLab the command “print -dpng FigureName” will save the figure as a small png file (and it is more

reliable than trying to use the GUI in the figure window).

THE END.


