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1 DiAn02. Speed of a non-linear diffusion front (ν ∝ C2)

Statement: Speed of a non-linear diffusion front

Consider some substance diffusing in an isotropic 1 medium at rest.
Then the following equation applies Ct = div (ν∇C), (1.1)
where

1. Fick’s law of diffusion is assumed: the substance flux due to diffusion is along the gradient of the concentration,
from higher to lower concentrations. For this it is important that the medium be isotropic — else the flux
diffusion may occur along directions that depend both on the gradient of the concentration, as well as special
directions in the media.

2. C = C(~x, t) is the substance concentration (mass per volume) — e.g.: grams per liter.

3. ν > 0 is the diffusion coefficient.

4. ∇C is the gradient of the concentration, and div denotes the divergence of a vector field.

When ν is a constant (1.1) reduces to the linear diffusion equation Ct = ν∆ C, (1.2)

where ∆ is the Laplace operator, ∆ = ∂2x + ∂2y + ∂2z .

However, there are situations where the diffusion coefficient is not constant, and depends (for example) on the con-
centration itself: ν = ν(C). Here we will consider the particular case where ν ∝ C2 and the medium is homogeneous. 2

Then (1.1) reduces to
Ct = µdiv

(
C2∇C

)
, (1.3)

where µ > 0 is a constant.

Under conditions where (1.3) applies, imagine that at t = 0 there is a very tiny blob of substance somewhere in the
media. Then, due to the diffusion, the size of the blob will increase with time — with a sharp edge between the
region where C > 0, and the region where there is no substance. Note: In this the behavior of (1.3) differs from that
of (1.2). In the case of the linear diffusion equation, the blob’s edge ceases to be sharp for t > 0, even if the initial
blob has a sharp edge.

Problem Tasks. What you are expected to do.

Let M be the total mass in the blob, and make the approximation that, at time t = 0 the blob is just a point —
i.e.: all the substance’s mass is concentrated in a blob so tiny that you can think of it as a point. Then perform the
tasks below, using qualitative (but precise) physical arguments only — do not solve the equation.

1 Isotropic means that the properties of the medium are invariant under rotation.
2 Homogeneous means that the properties of the medium are the same everywhere.
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q1. What dimensions does µ have?

q2. Argue that the shape of the blob is a sphere for t > 0.

q3. Find a formula for the radius of the blob R = R(t) as a function of time — namely: a formula of the form
R = α f(t), where α is a dimension-less constant (a number), and f(t) is some function of time. You will not
able to calculate α without solving the p.d.e. (1.3), which you are not expected to do. But you should be able
to fully determine the function f(t).

Assume now that R(t) = 5mm when t = 3.75 sec.

q4. What value does R take for t = 960 sec = 16 min?

q5. For what value of t is R = 5 cm?

q6. Would your answers change if the nonlinear diffusion occurred in the plane, instead of in 3-D? In particular,
what are the answers to q1 and q3 in 2-D?

Hint. The formula giving the radius as a function of time must involve physical constants that allow it to transform
time into length. These physical constants must result from the physical constants in the problem, and only them —
e.g.: if you write a formula that involves the speed of light in it, something went wrong with your reasoning!

2 Overdamped pendulum with a torsional spring

Statement: Overdamped pendulum with a torsional spring

Suppose that the overdamped pendulum is connected to a torsional spring. As the pendulum rotates, the spring
winds up and generates an opposing torque −k θ, k > 0. The equation of motion is then bθ̇+mgL sin θ = Γ−kθ,
where b is the damping coefficient.

a. Does this equation give a well-defined vector field on the circle?

b. Nondimensionalize the equation.

c. What does the pendulum do in the long run?

d. Show that many bifurcations occur as k is varied from 0 to ∞. What kind of bifurcations are they?

3 Exponential to algebraic decay transition

Statement: Exponential to algebraic decay transition

Consider the equation 3 ẋ = −r x− x3, with initial data x(0) = x0. In the limit r ↓ 0, the solution to this equation
transitions from exponential decay as t→∞ (when r > 0) to algebraic decay when r = 0.
Why? Because when x becomes very small, the behavior of the solution is controlled by the term −r x if r > 0. On the other

hand, if r = 0, the exact solution x = x0/
√

1 + 2x2
0 t decays like 1/

√
2 t. However, how do we know that the solutions decay when

r > 0? Because then ẋ/x = −(r + x2) < r, so that the solution size is less than |x0| e−r t.

Assume that 0 < r � 1. Then the solution should decay exponentially fast

as t→∞, yet (because r is small) the solution should also be “close” to the x∗ =
x0√

1 + 2x20 t
(3.1)

solution to the problem when the term −r x is neglected. That is: (3.1).
How can these two things happen simultaneously?

3 Note that this equation is one of the two possible normal forms for pitchfork bifurcations.
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(a) Use separation of variables (or any other method) to solve ẋ = −r x− x3, x(0) = x0, r > 0, analytically.
Hint: what equation does y = 1/x2 satisfy? Once you know y, finding the sign of x is easy.

(b) For the solution in item a, show that x ∼ C e−r t for t→∞, where C is a constant that you should compute.

(c) For the solution in item a, show that x ∼ x∗ for 0 ≤ r t� 1, where x∗ is as in (3.1). Notice that, as r ↓ 0, the
time interval over which this is valid gets larger and larger.

(d) To get some intuition on what is going on, plot the exact solution you obtained in item a versus x∗ in (3.1)
[plot #1]. In addition, plot the exact solution you obtained in item a versus the approximation in item b [plot
#2]. Use the same parameter values for both plots, but different time ranges. Suggestion: Use x0 = 1 and
r = 0.01. Then, for plot #1 use the range 0 < t < 50, and for plot #2 the range 0 < t < 100.

4 Attracting and Liapunov stable

Statement: Attracting and Liapunov stable

Recall the definitions for the various types of stability that concern critical points:
Let x∗ be a fixed point of the system ẋ = f(x). Then:

1. x∗ is attracting if there is a δ > 0 such that limt→∞ = x∗ whenever ‖x(0)− x∗‖ < δ. That is: any trajectory
that starts within δ of x∗ eventually converges to x∗. Note that trajectories that start nearby x∗ need not stay
close in the short run, but must approach x∗ in the long run.

2. x∗ is Liapunov stable if for each ε > 0, there is a δ > 0 such that ‖x(t)− x∗‖ < ε for t > 0, whenever
‖x(0)− x∗‖ < δ. Thus, trajectories that start within δ of x∗ stay within ε of x∗ for all t > 0.
In contrast with attracting, Liapunov stability requires nearby trajectories to remain close for all t > 0.

3. x∗ is asymptotically stable if it is both attracting and Liapunov stable.

4. x∗ is repeller if there exist ε > 0 and δ > 0 such that: if 0 < ‖x(0)− x∗‖ < δ, then (after some critical time) it
will be ‖x(t)− x∗‖ > ε (i.e., for t > tc). Repellers are a special kind of unstable critical points.

For each of the following systems, decide whether the origin is attracting but not Liapunov stable, Liapunov stable,
asymptotically stable, repeller, or unstable but not a repeller.

a) ẋ = 2 y and ẏ = −3x.

b) ẋ = y cos(x2 + y2) and ẏ = −x cos(x2 + y2).

c) ẋ = −x and ẏ = −|y| y.

d) ẋ = 2x y and ẏ = y2 − x2. Hint: what happens along x = 0?

e) ẋ = x− 2 y x2 − 4 y3 and ẏ = y + x3 + 2x y2.

f) ẋ = y and ẏ = x.

g) Finally, consider the critical point (x, y) = (1, 0), for the system

ẋ = (1− r2)x− (1− x
r ) y and ẏ = (1− r2) y + (1− x

r )x, (4.1)

defined in the “punctured” plane r =
√
x2 + y2 > 0. Hint: write the equations in polar coordinates.

Additional hints. In some cases you can get the answer by finding a function J = J (x, y) with a local minimum at
the origin such that dJ

dt > 0 along trajectories — or maybe one such dJ
dt < 0, or maybe one such dJ

dt = 0. In other
cases look for special trajectories that either leave, or approach, the origin.

THE END.


