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1 Computer exercises with a 1-D map

Statement: Computer exercises with a 1-D map.

The objective of this problem is to give an elementary first introduction to concepts such as: fixed point, stability,

bifurcations, and chaos, via “experimental” (i.e., numerical) computation. We do this by using a very simple

mathematical model. This model is highly abstract, but we will argue later in the course that the model is also (to a

significant degree) representative of the behavior of many real systems. In addition, this assignment also introduces

the kind of computing problems we shall often, but not always, assign.

In this model we will assume that the system is described by a single time-dependent variable, x(t). This variable

could represent, say, the globally averaged temperature on the Earth’s surface, the size of a particular population of

animals on some secluded island (or in a Petri dish), some particular stock market average, etc. Furthermore, we will

suppose that we are interested only in the values xn = x(tn) at discrete times tn = n∆t, where ∆t is some suitable

interval of time (say, a day). The evolution

of x in time may then be written as xn+1 = F (xn). (1.1)

where F is some function that describes the dynamics. For any of the examples

mentioned above, it is obvious that the “true” F would involve complicated equations. Rather than going into that

kind of detail, we consider below two

rather simple choices for F . That is: F (x) = µx, (1.2)

and F (x) = c π sin(x), (1.3)

where µ and c are (real) constants. These are your tasks:

1. For (1.1–1.2), without using the computer, what can you predict about the behavior of xn, given an initial

condition x0 6= 0? (Note: of particular interest is the behavior for n→∞).

1a. Qualitatively, what is different about the cases |µ| < 1, |µ| > 1, and |µ| = 1?

1b. What is the qualitative difference between the evolution with µ > 0 and µ < 0?

1c. Check your conclusions numerically (do not hand in any plots for this, you can even use a calculator).

Note: In this case x = 0 is a fixed point of the evolution (i.e.: xn+1 = xn if xn = 0), and your conclusions,

in particular, speak to the stability of this fixed point (what happens if a small perturbation is applied).

2. We now turn to (1.1–1.3). For this example a MatLab script, IterateSineMap, is supplied. Please read the

script description at the top of the IterateSineMap.m file, which describes in detail what the script does and

how to use it. The aim of this part of the problem is to explore the behavior of (1.1–1.3) as the parameter

c changes. Notice that, if 0 ≤ c ≤ 1, then for 0 ≤ xn ≤ π, we have 0 ≤ xn+1 ≤ π. Thus we will restrict

the exploration to these ranges and ask How does xn behave for n large? (IterateSineMap was specifically

designed for this task).
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The system (1.1–1.3) exhibits many behaviors. For example, xn may approach a constant (a fixed point) as

n → ∞, or it may approach a periodic cycle, where xn+p = xn (p is the period), or the n → ∞ behavior

may be chaotic (see remark 1.1), or it may exhibit intermittent chaos, where the sequence alternates (seemingly

randomly) between being close to a periodic cycle, and chaotic bursts. 1 These various behaviors correspond

to different values of c, with the transition from one to another occurring at critical values of c (of which there

are many; infinitely many, in fact).

A value c = cc is called a critical value if the long term evolution for xn changes qualitatively as c crosses cc.

These qualitative changes are called bifurcations. For example, on one side of cc the system may be attracted

to some fixed point x∗, and to a different fixed point on the other side. Or maybe the behavior switches from

fixed point to periodic of some period p > 1, or the period changes across cc, etc.

These are the questions you are asked to investigate:

2a. What happens for 0 ≤ c < c1 = 1/π ≈ 0.3183, and for c1 < c < c2, where 2 c2 ≈ 0.72. Can you

explain why c1 happens at 1/π? Hint: Linearize the map for x small, and use part 1.

Note that c1 and c2 are critical values, or bifurcation points.

2b. What happens for c slightly above c2? Hint: Check c = 0.73 first, and then explore more carefully.

2c. In fact, there is an infinite sequence of critical points c1 < c2 < c3 < . . ., with limn→∞ cn = c∞
(where c∞ ≈ 0.8655791). In each “window” cn < c < cn+1, the limit behavior of xn is very simple

— in part 2b you should already have discovered what happens for c2 < c < c3.

Compute the first few cn, say, c3 and c4, and describe the behavior in the corresponding windows,

say c3 < c < c4 and c4 < c < c5 — note that you do not need to know c5 to ascertain the behavior in

c4 < c < c5. Provide values with, at least, 4 accurate decimal digits: cn ≈ 0.abcd.

Approximate values are as follows: c3 ≈ 0.805, c4 ≈ 0.850, c5 ≈ 0.863, and c6 ≈ 0.865. Note that

beyond c8 4 digits are not enough to tell the values apart, so the calculations get increasingly harder.

2d. From your results in 2c, can you guess what the pattern is for cn < c < cn+1.

2e. Now look at what happens slightly beyond c∞. Specifically, what do you see for c = 0.866? Do your

best here; see remark 1.1.

2f. What do you see for c = 0.880876?

2f. What do you see for c = 0.8814? Note: in fact, the behavior you see here happens for a whole window,

0.880877 · · · < c < 0.881464 . . ..

Optional: keep going a little beyond c = 0.881464 . . ., what happens?

2g. What do you see for c = 0.9395? Note: in fact, the behavior you see here happens for a whole window,

0.937819 · · · < c < 0.940943 . . ..

Optional: keep going a little beyond c = 0.940943 . . ., what happens?

Remark 1.1 For this problem we will not define chaos (will be done later). Here simply check that the behavior is

not periodic of any “reasonable” period,† e.g.: 1 ≤ p ≤ 16 (many can be excluded by simple eye-sight). ♣
† Because you are doing this in a computer, there is only a finite number of values xn can take, so the computed sequence xn

will always be periodic ... but the period can be huge, for any practical purposes “infinite”.

THE END.

1The MatLab script provided allows you to check for these behaviors.
2A more precise value is c2 = 0.719961682979535 . . . We will see how this can be computed later in the semester.


