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1 Liapunov vs Lyapunov vs Ljapunov . . . Which one?

If you search the web, you will find, mostly Lyapunov being used. However, if you look at dynamical system books

(e.g.: see the books in the syllabus), what you find is (mostly) Liapunov. For example:

Liapunov used by Strogatz,

Liapunov used by Wiggins,

Liapunov used by Guckenheimer and Holmes,

Liapunov used by Bergé, Pomeau, and Vidal.

Liapunov used by Drazin,

Ljapunov used by Peitgen, Jürgen, and Saupe.

Lyapunov used by Parker and Chua, Practical Numerical Algorithms for Chaotic Systems — this one is not in the syllabus.

Why is this? I think it has to do with the ambiguity in translating from the Cyrillic to the Latin alphabet. Technically,

none of the above is correct, because the actual name of the person we are

referring too (a.k.a. Alexander Liapunov) was written in Cyrillic; something like !"#$%&'()"* +,-./(%)

2 Liapunov exponents for 1-D maps #03

2.1 Statement: Liapunov exponents for 1-D maps #03

1
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Task#1 of 3. Compute the Liapunov exponent, and make a plot analog to figure 10.5.2 in Strogatz’s book (i.e.:

example 10.5.3) for the 1-D maps xn+1 = f(xn, r) below. In all cases justify the selected ranges for x and r.

Meaning of “justify”. Show that if xn is in the x-region, then so is xn+1. Thus it makes sense to iterate the map.

1. The Max-µ map f(x) = r (1− |2x− 1|µ), with µ = 1.5. Range 0 ≤ r ≤ 1 and 0 ≤ x ≤ 1. In addition,

make plots for the refined regions: (1a) 0.7930 ≤ r ≤ 0.8170 and 0 ≤ x ≤ 1.

(1b) 0.9236 ≤ r ≤ 0.9261 and 0 ≤ x ≤ 1.

2. Max-µ map f(x) = r (1 − |2x − 1|µ), with µ = 2.5. Range 0 ≤ r ≤ 1 and 0 ≤ x ≤ 1. In addition,

make plots for the refined regions: (2a) 0.925400 ≤ r ≤ 0.928400 and 0 ≤ x ≤ 1.

(2b) 0.928078 ≤ r ≤ 0.928097 and 0 ≤ x ≤ 1.

(2c) 0.928095 ≤ r ≤ 0.928099 and 0 ≤ x ≤ 1.

General remarks and background needed for Task#2.

These maps behave in a fashion similar to the Logistic map f(x) = 4 r x (1− x), with a series of bifurcations as r

grows, at values: 0 < r1 < r2 < · · · < r∞ < 1.

At r = r1 the origin becomes unstable, and a new (stable) critical point 0 < x∗ < 1 is born past it.

At r = r2 a (stable) period two solution is born when x∗ becomes unstable (flip bifurcation).

At r = r3 a period doubling occurs, followed by further period doublings at each r = rn, 3 < n <∞.

At r = r∞ a transition to chaos occurs.

Beyond r = r∞ more bifurcations occur, with periodic “windows” (each including within it a period

doubling cascade) interspaced with chaotic regions.

In each interval rn < r < rn+1 the (global) attractor is a periodic solution 1 of period 2n−1. At a particular point

rn < r = sn < rn+1 in each interval the attractor is super-stable — meaning that perturbations evolve according

to εn+1 = O(ε2n). Furthermore:

The rn converge geometrically to r∞: Rn = (rn−1 − rn−2)/(rn − rn−1) is approximately constant.

The sn converge geometrically to r∞: Sn = (sn−1 − sn−2)/(sn − sn−1) is approximately constant.

The Feigenbaum number δmap = lim
n→∞

Rn = lim
n→∞

Sn (2.1)

characterizes the convergence rate; i.e.: r∞ − rn
and r∞ − sn behave like (δmap)−n for n� 1.

Note that the rn are difficult to compute accurately, because they correspond to neutrally stable solutions. On the

other hand, the sn are relatively easy to compute accurately, since they correspond to super-stable solutions. Hence

the second equality in (2.1) provides the better way to compute δmap.

How does this all relate to the Liapunov exponent λe(r)?

Chaos yields λe > 0.

Period doubling: rn is a local maximum of λe, where λe = 0. That is: λe(rn) = 0 and λe < 0 on each

side of rn.

Super-stable attractors yield λe = −∞. However, in a numerical calculation this will, generally, not be

true. Instead, downward (negative) spikes in the plot of λe versus r (centered at r ≈ sn) are seen.

Task#2 of 3. In both cases above for the Max-µ map (µ = 1.5 and µ = 2.5), calculate a few sn (say, for

1 ≤ n ≤ 4) and use these values to get an estimate for δMax-1.5 and δMax-2.5. Note that 3 significant digits for sn,

2 ≤ n ≤ 4, will allow you to get S4 with about 2 significant digits.

Task#3 of 3 (optional). The plot for (2c) shows the transition from period doubling to the “beyond r∞” chaos

region — as seen from point of view of the Liapunov exponent. What does the plot for (1b) show?

Hints, process, and remarks.
1For n = 1 the attractor is actually critical point — i.e.: period = 1.
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h1. The process to compute the Liapunov exponent λe is explained in example 10.5.3 of the book by Strogatz. Specifically: for

a given value of r, select a random 0 < x1 < 1. Then iterate the map, xn+1 = f(xn, r), for 1 ≤ n ≤ nb, where

nb � 1 (say: a few thousand times) — this so the attractor is reached. Next continue the map iteration, and start the

computation of λe, as follows: (i) Define λ1 = 0. (ii) Let λm+1 = λm + 1
np

log(|f ′(xn, r)|), for 1 ≤ m ≤ np, where

n = nb +m, np � 1 (a few thousands, at least), and f ′ = df/dx. (iii) Then λe ≈ λnp+1.

This has to be done for each value of r in a grid within the desired range r1 ≤ r ≤ r2. For example, an equi-spaced uniform

grid, with separation ∆r = (r2 − r1)/N .

h2. If you do this with MatLab, it is important that you “vectorize” the calculation (for speed). Place all the values of r in an

array ~r, with the corresponding values for the iterates (and Liapunov exponent approximation) in arrays ~xn and ~λm, and

compute everything simultaneously — note that, at any stage in the iterations, you need to keep (at most) values for two n

and two m. Finally: use the MatLab command “print -dpng FigureName” to save the figure as a small png file — this is

more reliable than trying to use the GUI in the figure window.

h3. Calculation of the sn. Since the Sn involve differences of sn, significant digits are lost in the calculation. To get sn

accurate enough, you will need a fine grid in r (small ∆r). However, even with a laptop, a ”vectorized” MatLab calculation

with N ∼ 105 values of r will take, at most, a few minutes. The main limitation in (2.1) is that, in principle, you need

”large” values of n to accurately compute δmap — but you are not asked to do this.

Finally, note that you can get the required values of the sn graphically, by using “zoom” and the “data cursor” in the MatLab

figure window with the plot of λe versus r.

2.2 Answer: Liapunov exponents for 1-D maps #03

The answer to the three tasks follows below.

Task#1. We begin by the justification of ranges. In both cases f ≥ 0 for 0 ≤ x ≤ 1, with minimum value f = 0

at x = 0, 1, and maximum f = r at x = 0.5. Thus f maps the unit interval onto itself, as long as 0 ≤ r ≤ 1.

The required plots are in figures 2.1–2.3, and the left panel in figure 2.4.

Figure 2.1:

Liapunov exp.

Max-1.5.

s1 through s6

marked (cyclic)

in magenta, cyan,

red, green, . . .

For more details

see text.

The panels in figure 2.1 correspond to the Max-µ map with µ = 1.5. The left panel shows the Liapunov exponent

for 0 ≤ r ≤ 1, while the right panel shows the Liapunov exponent for 0.7930 ≤ r ≤ 0.8170. Note that in the

right panel the r-coordinate is shifted by 0.793 — this is because the interval is small, and proper labels do not fit

otherwise. Finally, the values r = sn (corresponding to super-stable attractors) are indicated by color coded vertical

lines. The color codes cycle through magenta, cyan, red, and green (starting with magenta for s1).

Approximate values for the sn are: s2 ≈ 0.733, s3 ≈ 0.794, and s4 ≈ 0.810,

while s1 = 0.5 (exact). Then (2.1) yields S4 ≈ 3.8. (2.2)

More accurate values are: s2 ≈ 0.73279, s3 ≈ 0.79363, s4 ≈ 0.80972, s5 ≈ 0.81396,

and s6 ≈ 0.81508. These then lead to: S3 ≈ 3.826, S4 ≈ 3.781, S5 ≈ 3.792, and S6 ≈ 3.798. (2.3)
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Figure 2.2:

Liapunov exp.

for Max-2.5.

s1 through s7

marked (cyclic)

in magenta, cyan,

red, green, . . .

For more details

see text.

The panels in figure 2.2 correspond to the Max-µ map with µ = 2.5. The left panel shows the Liapunov exponent

for 0 ≤ r ≤ 1, while the right panel shows the Liapunov exponent for 0.925400 ≤ r ≤ 0.928400. Note that

in the right panel the r-coordinate is shifted by 0.92 — this is because the interval is small, and proper labels do

not fit otherwise. Finally, the values r = sn (corresponding to super-stable attractors) are indicated by color coded

vertical lines. The color codes cycle through magenta, cyan, red, and green (starting with magenta for s1).

Approximate values for the sn are: s2 ≈ 0.851, s3 ≈ 0.914, and s4 ≈ 0.925,

while s1 = 0.5 (exact). Then (2.1) yields S4 ≈ 5.7. (2.4)

More accurate values † are: s2 ≈ 0.85080, s3 ≈ 0.91394, s4 ≈ 0.925481,

s5 ≈ 0.927613, s6 ≈ 0.92800684, s7 ≈ 0.92807958, s8 ≈ 0.928093018,

s9 ≈ 0.928095500, s10 ≈ 0.928095959, etc.

These then lead to: S3 ≈ 5.556, S4 ≈ 5.471, S5 ≈ 5.414,

S6 ≈ 5.414, S7 ≈ 5.413, S8 ≈ 5.413, (2.5)

S9 ≈ 5.41, S10 ≈ 5.41, etc.

† Not sure of how much trust I have on the last digit in s8 through s10.

Figure 2.3:

Liapunov exp.

for Max-2.5.

s7 through s10

marked in red,

green, magenta,

and cyan.

For more details

see text.

The panels in figure 2.3 correspond to the Max-µ map with µ = 2.5. The left panel shows the Liapunov exponent

for 0.928078 ≤ r ≤ 0.928097, while the right panel shows the Liapunov exponent for 0.928095 ≤ r ≤ 0.928099.

Note that in the left/right panel the r-coordinates are shifted by 0.928/0.928095 — this is because the interval is

small, and proper labels do not fit otherwise. As before, the values r = sn (corresponding to super-stable attractors)

are indicated by color coded vertical lines. The color codes cycle through red, green, magenta, and cyan (starting

with red for s7). Finally, the right panel shows the region near r∞, with period doubling on the left and chaos
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on the right. Within the chaotic region we can see a “large” periodic window, and a few smaller ones — these are

characterized by regions where the Liapunov exponent drops below zero.

Remark. The Liapunov exponent is negative within “periodic windows” (where the attractor is a periodic orbit), and reaches −∞ at

the super-stable periodic orbits within each window (lack of numerical resolution cuts these downward “spikes” to a finite value). In

chaotic regions the Liapunov exponent is positive. Further: the chaotic regions contain a fractal structure of periodic windows

(hard to resolve beyond the larger ones). These features are evident in the plots of Liapunov exponents shown in this answer. ♣

Figure 2.4:

Max-1.5 map.

Left: Liapunov

exponent for

the region (1b).

Right: partial

orbit diagram.

For more details

see text.

The panels in figure 2.4 correspond to the Max-µ map with µ = 1.5. The left panel shows the Liapunov exponent

for 0.9236 ≤ r ≤ 0.9261. Note that the r-coordinate in this panel is shifted by 0.9236 — this is because the

interval is small, and proper labels do not fit otherwise. The right panel shows a partial orbit diagram for the map,

starting from a period 4 attractor (r = 0.8) to a value deep in the chaos region (r = 0.93). In this right panel,

the values of r corresponding to the left panel are shown bracketed by two dashed red lines.

Task#2. This task is done in (2.2–2.3) for µ = 1.5, and in

(2.4–2.5) for µ = 2.5. This results in the estimates δMax-1.5 ≈ 3.8 and δMax-2.5 ≈ 5.7 (2.6)

for the Feigenbaum number. 2 Note that these values

differ from the universal Feigenbaum constant δ2 = 4.6692 . . ., but there is nothing wrong with them. Further

this does not contradict the universality of δ2. The reason is that δ2 is universal for unimodal maps where the

maximum is quadratic, which is not the case here (where the maximum is controlled by µ 6= 2). In fact, it can be

checked that δMax-µ grows ‡ with µ (e.g.: δMax-4 ≈ 7.2).

Task#3. The plot for (1b) is shown on the left panel of figure 2.4. What we see there is a “periodic window”

embedded within the chaotic region — even a period doubling cascade can be clearly seen. The right panel of

figure 2.4 shows that this is, in fact, the period three window.

3 Nonlinear stability of a discrete map, and flip bifurcation

3.1 Statement: Nonlinear stability of a discrete map, and flip bifurcation

Consider a 1-D map, xn+1 = f(xn), where f is smooth. Assume a fixed point xf = f(xf), where f ′(xf) = −1

— hence linearization does not determine the stability of

xf . Without loss of generality, assume x∗ = 0, and write f(x) = −x+ ax2 + b x3 + O(x4), (3.1)

where a and b are constants. These are your tasks:
2Note that (2.5) yields the more accurate estimate δMax-2.5 ≈ 5.413.
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t1. Find condition on a and b that determines wether x = 0 is a stable or unstable fixed point. Hint:

t1.a The condition looks like: stability if h(a, b) > 0, and instability if h(a, b) < 0, for some function h.

t1.b Consider what happens upon iterating g(x) = f(f(x)), which you can ascertain by expanding g to O(x4),

using (3.1). Then note: if x2n+2 = g(x2n) decays/grows, then so does x2n+3, because f is continuous.

t2. Answer this question: why do you have to expand g up to O(x4), in item t1.b, to determine stability? Note

that here I expect the mathematical/technical reason for this.

t3. Let a and b in (3.1) be such that x = 0 is stable,

i.e.: h(a, b) > 0, and take a map F such that F (x) = −(1 + δ)x+ ax2 + b x3 + O(x4), (3.2)

where 0 < δ � 1. Then x is a linearly unstable

fixed point, and a period two (stable) solution x∗n+2 = x∗n, x∗n+1 = F (x∗n), (3.3)

appears,‡ where x∗n has size O(
√
δ).

This is called a supercritical (or soft) flip bifurcation.

‡ Argument: the same we made to explain the scaling behind supercritical pitchfork and Hopf bifurcations.

The new solution appears as a balance between the destabilizing linearity, and the stabilizing nonlinearity.

Your task. Pick an example F where this happens, with a 6= 0 6= b, and show a numerically computed picture

of cobwebs† converging to the period two stable solution.

† Use two cobwebs (with different colors), one converging from “inside” and the other from “outside”.

I suggest that you write a “generic” program for F (x) = −(1 + δ)x+ ax2 + b x3 and initial data x0, and

then play with the parameters till you get a pretty picture. Further: choose your colors well; e.g.: yellow on a

white background is a bad idea! Note: something like 1 < a < 2, b ∼ −2/3, and δ ∼ 0.32, worked for me.

3.2 Answer: Nonlinear stability of a discrete map, and flip bifurcation

The answers to the tasks are below.

t1. We have: g(x) = −(−x+ ax2 + b x3) + a (−x+ ax2)2 − b x3 +O(x4) = x− 2 (a2 + b)x3 +O(x4),

where we note that the quadratic terms cancel!

This can be written as g(x) =
(
1− 2 (a2 + b)x2 + O(x3)

)
x = λ(x)x, (3.4)

from which it is clear that:

a2 + b > 0⇒ 0 < λ < 1 for x small. Therefore: x = 0 is stable. (3.5)

a2 + b < 0⇒ 1 < λ for x small. Therefore: x = 0 is unstable. (3.6)

t2. We need to compute up to O(x4) because, as shown in item t1, the O(x2) vanish, and stability is decided by

the O(x3) terms.

t3. See figure 3.1

THE END.



18.353 MIT, (Rosales) Nonlinear stability of a discrete map and flip bifurcation. 7

Figure 3.1: Cobwebs converging to period two.

Nonlinear stability of a discrete map, and flip bifurcation.

The picture on the left shows two cobwebs, converging

towards a stable period two solution (after a supercrit-

ical flip bifurcation),

for the map F (x) = −1.08x+ 1.5x2 − 0.7x3.

Note that the

amplitude of the period two solution is O(
√
δ), as ex-

pected (here
√
δ ≈ 0.283).

The function F is plotted in blue, while the green dot-

ted line corresponds to y = x.


