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1 Computer exercises with a 1-D map v2

1.1 Statement: Computer exercises with a 1-D map v2.

The objective of this problem is to give an elementary first introduction to concepts such as: fixed point, stability,

bifurcations, and chaos, via “experimental” (i.e., numerical) computation; plus a little bit of simple theory. We

will do this by using a very simple mathematical model. This model is highly abstract, but we will argue later in

the course that the model is also (to a significant degree) representative of the behavior of many real systems. In

addition, this assignment also introduces the kind of computing and/or theoretical problems we shall often, but not

always, assign.

In this model we will assume that the system is described by a single (scalar) time-dependent variable, x(t). This

variable could represent, say, the globally averaged temperature on the Earth’s surface, the size of a particular

population of animals on some secluded island (or in a Petri dish), some particular stock market average, etc.

Furthermore, we will suppose that we are interested only in the values xn = x(tn) at discrete times tn = n∆t, where

∆t is some suitable interval of time (say, a day). We then assume that

the evolution of x in time may be written as xn+1 = F (xn). (1.1)

where F is some function that describes the dynamics. For any of the

examples mentioned above, it is obvious that the “true” F would involve complicated equations. Rather than going

into that kind of detail, we will consider below

two rather simple choices for F . That is: F (x) = µx, (1.2)

and F (x) = Lpf x (1− x2), (1.3)

1
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where pf = 1.5
√

3, while µ and L are parameters (real

constants) which vary in some range. Below, after the remark and definition, are your tasks.

Remark 1.1 Notice that, for any function F : given xn, all xm with m > n are uniquely determined — the forward

“time” evolution is well defined.†

† This simple observation is the key to the answer for some of the theory-tasks below.

However, unless F is invertible, the backward time evolution is not well defined. There may be no xn−1 such that

xn = F (xn−1), or there may be many. For example, let F (x) = x2 and consider the cases xn < 0 and xn > 0. ♣

Definition 1.1 Periodic orbits. Given (1.1), and some x0, the sequence {xn} is called an orbit for the dynamical

system. An orbit is periodic, of period p (p > 0 an integer) if xn+p = xn,

for all n, and no integer 0 < q < p satisfies xn+q = xn.‡

‡ Obviously, if q is a multiple of p, xn+q = xn. Thus the period is the smallest positive integer satisfying xn+q = xn.

Note that p = 1 corresponds to a fixed point. ♣
Note: In general, as n→∞, the orbits for (1.1) approach either a periodic or a chaotic# orbit, and periodic orbits

are very important in the transition to chaos as some parameter in F varies — say, L in (1.3). For this reason below

we pay particular attention to the periodic orbits. # See remark 1.2.

Theoretical questions.

t1 Assume (1.1) and (1.2). Then, without using the computer, what can you predict about the behavior of xn as

n→∞, given an initial condition x0 6= 0?

t1a Qualitatively, what is different about the cases |µ| < 1, |µ| > 1, and |µ| = 1?

t1b What is the qualitative difference between the evolution with µ > 0 and µ < 0?

t1c Check your conclusions numerically (do not hand in any plots for this, you can even use a calculator).

Note: In this case x = 0 is a fixed point of the evolution (i.e.: xn ≡ 0 if x0 = 0), and your conclusions, in

particular, speak to the stability of this fixed point (what happens if a small perturbation is applied).

t2 Assume (1.1) and (1.3), with 0 ≤ L ≤ 1. Show: F maps the unit interval onto itself — i.e.: 0 ≤ F (x) ≤ 1 if

0 ≤ x ≤ 1. Thus the unit interval is a suitable phase space for this dynamical system (phase space was defined

in the lectures).

t3 Assume (1.1) and a generic F . Below: prove true or false.

t3a Assume {xn} is periodic of period p. Then {xn} cycles through p different values. Hint: see remark 1.1.

t3b Assume {xn} cycles through exactly p > 0 different values, with every value taken at least twice in the

sequence. Then

{xn} is periodic of period p.

Note: This fails for generic sequences; that this is a deterministic dynamical system matters. Examples: Flips

of a coin with values head (1) or tail (0). Digits of the decimal representation of an irrational number.

Note: Twice each value matters. Example: {3, 1, −1, 1, −1, 1, −1 . . . }, with F (x) = −1 + 0.5 (x− 1)2, is not

periodic if x0 = 3 is included.

Hint: see remark 1.1.

t3c It is possible to have a non-constant {xn} such that xn+2 = xn and xn+5 = xn. Hint: see remark 1.1.

t3d Optional. Let {xn} have period p, and assume xn+q = xn for some q > p. Then q is a multiple of p.

Computer exploration. The aim is to numerically explore the system in (1.1), with F as in (1.3) and 0 ≤ x, L ≤ 1

— see item t2. Specifically: As a function of the parameter L, what is the behavior of the orbits {xn} as

n→∞? Further details (hints and tasks) follow.
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c1 For this task a MatLab script, IterateCubiMap, is supplied. Please read the script description at the top of

the IterateCubiMap.m file, which describes in detail what the script does and how to use it. IterateCubiMap

was specifically designed to help with the required task: How does xn behave for n large?

However, you should not restrict yourself to this script only. For example, from item t3 it follows that you

can get a lot of information (for a given L) by plotting/marking in the interval 0 ≤ x ≤ 1 the points visited by

the sequence {xn} for n large (this so the sequence has time to achieve its asymptotic behavior). Then:

c1a If the orbit visits only a finite set of points, then it is periodic, and the period is the number of points.

c1b Chaotic orbits will fill regions, containing an infinite number of points (but see remark 1.2).

Note. For now we will not attempt to define chaos. Just “looks random” is enough — see remark 1.2.

Note. Of course, with a computer you cannot plot “an infinite number of points”; but you can detect orbits that

visit a very large number of points.

Note. Visiting an infinite number of points is not enough to characterize a discrete dynamical system orbit as

chaotic; but for us here this will do. Further, the regions visited by a chaotic orbit are not “intervals”;

in fact they can be quite complicated (fractals); though it would be very hard for you to detect their

structure with the tools you have.

You should be able to write your own program implementing the idea in this paragraph (not required, though).

c2 The system (1.1/1.3) exhibits many behaviors. For example, xn may approach a constant (a fixed point) as

n → ∞, or it may approach a periodic cycle, where xn+p = xn (p is the period), or the n → ∞ behavior

may be chaotic (see remark 1.2), or it may exhibit intermittent chaos, where the sequence alternates (seemingly

randomly) between being close to a periodic cycle, and chaotic bursts. 1 These various behaviors correspond to

different values of L, with the transition from one to another occurring at critical values of L (of which there

are many; infinitely many, in fact).

A value L = Lc is called a critical value if the long term evolution for xn changes qualitatively as L crosses Lc.

These qualitative changes are called bifurcations. For example, on one side of Lc the system may be attracted

to some fixed point x∗, and to a different fixed point on the other side. Or maybe the behavior switches from

fixed point to periodic of some period p > 1, or the period changes across Lc, etc.

These are the questions you are asked to investigate:

c2a There is a critical value, L1, such that for L < L1 the orbits converge to x = 0, and for L1 < L < L2

they converge to a constant x = x∗ > 0. Find L1 and L2 (approximately) — it is very hard to accurately

compute the critical values numerically, and you are not being asked to do so.

Optional. In fact, L1 and x∗ are easy to compute analytically. Can you do so?

Hint: Linearize the map for x small, and use item t1.

Note that L1 and L2 are critical values, or bifurcation points.

c2b What happens for L slightly above L2?

c2c In fact, there is an infinite sequence of critical points L1 < L2 < L3 < . . ., with limn→∞ Ln = L∞
(where 0.88 < L∞ < 0.89). In each “window” Ln < L < Ln+1, the limit behavior of xn is very

simple — in part c2b you should already have discovered what happens for L2 < L < L3. Describe the

behavior in these windows. Note: it is very hard to compute in any detail anything beyond L4,‡ but you

can tell what happens for L4 < L < L5 without knowing L5. From these first few windows you should

be able to figure out (guess) what the pattern is for Ln < L < Ln+1.

‡ The window width Ln+1 − Ln decreases exponentially with n. Very quickly you will need more digits

than you have to tell the Ln them apart.

c2d What happens slightly beyond L∞. Do your best here; see remark 1.2.

1The MatLab script provided allows you to check for these behaviors.
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c2e What do you see beyond L∞, as you move up towards L = 1. Let us see how much can you find

(there is infinite detail here, so the sky is the limit). Hint. More critical values, more periodic windows, more

chaos, intermittent chaos.

Remark 1.2 For this problem we will not define chaos (will be done later). Here simply check that the behavior is

not periodic of any “reasonable” period,† e.g.: 1 ≤ p ≤ 16 (many can be excluded by simple eye-sight). ♣
† Because you are doing this in a computer, there is only a finite number of values xn can take, so the computed sequence xn

will always be periodic ... but the period can be huge, for any practical purposes “infinite”.

1.2 Answer: Computer exercises with a 1-D map v2

The problem solution, with the same item numeration used in the statement, follows below. I do not expect

you to provide an answer with the amount of detail here; the key things are that you: (a) Answered

the theoretical questions. (b) Answered the computational exploration questions in c2a-c2c, and did a reasonable

attempt at c2d-c2e. (c) Computed the requested critical points with reasonable accuracy (a couple of digits).

Remark 1.3 MatLab scripts included with the answer. Two MatLab files are included with the answer:

IterateCubiMapSelections.m This script runs IterateCubiMap for a menu of parameters designed to illustrate the behaviors described

in this answer. To run it, just use IterateCubiMapSelections(ns), where ns is a number that picks a selection.

IterateCubiMapAttSensi.m This script, and why it is important, is described in remark 1.6. ♣

Remark 1.4 Calculating the various thresholds, “naive” approach. I will illustrate how to do this, using the MatLab script

IterateCubiMap, with the example of L2 — the value at the boundary between the period 2 and constant x∗ attractors. Let us

begin by assuming that you have already found values L± above and below L2 (say, by trial and error, or by doing a coarse sweep

of L-values). Then you can check if L = (L− + L+)/2 is above or below L2, thus halving the size of the interval where L2 is

known to be. This will quickly narrow down the value of L2 to the limited accuracy this approach can achieve — see remark 1.5.

Important: (i) As you get closer to the critical value, you will notice that the dynamical system converges to the attractor slower,

so you will need to make the parameter n1 (iterates done before looking at the attractor) larger. (ii) IterateCubiMap includes a

parameter, n3, that allows you to check if the answer has period n3. This is critical because near L2 the period 2 solutions for

L > L2 cannot be distinguished “by eyesight” from a constant. (iii) If the period check tells you that the error in satisfying, say,

the period 2 condition is 10−14 (or some other rather small number, but not zero), it does not mean “it is not period 2”. You have

limited accuracy, so something that small has to be interpreted as “it likely is period 2” — see remark 1.5.

Alternative approach: In order to quickly determine the various bifurcations, I used an approach based on the suggestion in c1 of

the statement (see c1 in the answer below). However, this approach does not remove the need to use IterateCubiMap. ♣

Remark 1.5 Limits on accuracy. You may think that, if you are working in double precision (with about 16 digits) you should be

able to get the Ln with a lot of digits (if you are patient enough). But this is not true, the approach in remark 1.4 will, generally,

not be able to provide you with more than a few significant digits — “why” is explained in some detail in remark 1.7

Can you do better? Answer: yes, significantly better, but this requires theoretical knowledge not yet introduced in the lectures.

Using such knowledge, much better approaches to computing the thresholds can be developed.

For that matter, consider the “period check” done by the script IterateCubiMap — plot ∆n = xn+p−xn versus n for the computed

sequence of iterates {xn}. In exact arithmetic it would be ∆n ≡ 0 for a period-p sequence. But with fixed point calculations, you

will know (at best) each xn with a fixed number of digits (given by the available precision; about 16 for MatLab), or worse (because

errors can accumulate). So ∆n will probably not be zero. Because in the case here the xn are in the range 0.1 < xn < 1 for the

periodic solutions, a reasonable practical criteria is that |∆n| < 10−10 should be considered as “zero”.† ♣
† What I saw in my calculations was either (i) |∆n| < 10−15 (quite often |∆n| � 10−15); or (ii) |∆n| ≥ O(10−2).

Thus the distinction between periodic or not was clear-cut.

Theoretical questions.

t1 The solution to (1.1/1.2) can be written explicitly: xn = µn x0. (1.4)

It follows that:

t1a When |µ| < 1, xn → 0 as n→∞. Hence the fixed point x = 0 is an attractor, in particular: stable.

When |µ| > 1, |xn| → ∞ as n→∞. There is no attractor, and x = 0 is unstable.
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When |µ| = 1, |xn| ≡ |x0|. There is no attractor, but x = 0 is “neutrally” stable (perturbations neither

grow nor decay in size).

t1b When µ > 0 all the iterates have the same sign. No oscillations.

When µ < 0 the iterates alternate sign. Period 2 oscillations (damped if |µ| < 1, growing if |µ| > 1).

t1c No reply was requested here. Numerically check that what is said above is correct.

t2 Done in figure 1.1.
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Figure 1.1: Plot of the map F for L = 1.

On the left: plot of F for L = 1 — i.e.: y = pf x (1− x2).

Assume (1.1/1.3), with L > 0. It is easy to see that F (x) ≥ 0 for

0 ≤ x ≤ 1, and that F reaches a local maximum (F ′ = 0 and F ′ ′ < 0)

at x = 1/
√

3, with F (1/
√

3) = L. Hence F maps the unit interval

onto itself for 0 ≤ L ≤ 1 (the case L = 0, not done, is trivial). ♣

t3 Assume (1.1), with F “generic”. Then:

t3a {xn} periodic of period p =⇒ it cycles through p different values.

Proof. Since xn+p = xn, the sequence takes no more than p values. Further,

suppose that in one period a value repeats: For some n ≤ n1 < n2 < n + p,

xn1 = xn2 . Then remark 1.1 would imply xn+q = xn, with q = n2 − n1 < p, and p would not be the period. ♣

t3b Let {xn} cycle through exactly p > 0 different values, with every value taken at least twice in the sequence.

Then {xn} is periodic of period p.

Proof. If the sequence starts at some n = n1, consider the first repeat of the initial value: xn1 = xn2 , where n2 > n1 —

otherwise, take n1 arbitrary. Then remark 1.1 yields xn+q = xn, where q = n2 − n1. Thus the sequence is periodic, with

some period p∗. Using t3a, it follows that the sequence takes p∗ different values. Hence it must be p∗ = p. ♣

t3c False: It is possible to have a non-constant {xn} such that xn+2 = xn and xn+5 = xn.

Proof. (i) xn+2 = xn yields x0 = x2 = x4. (ii) xn+5 = xn yields x0 = x5. But then F (x0) = F (x2) = F (x4) from (i) and

F (x4) = x5 = x0 from (ii) so that F (x0) = x0. Hence the sequence is constant. ♣
Note: here I started the argument with x0, but it can be done with any xm, and then it shows xm+q = xm for all q ≥ 0.

t3d Let {xn} have period p, and assume xn+q = xn for some q > p. Then q is a multiple of p.

Proof. Let qL = largest multiple of p with qL ≤ q. If qL = q, then we are done. Otherwise 0 < p∗ = q − qL < p [A].

Now, since xn+q = xn and xn+qL = xn, we have xm+p∗ = xm (take m = n+ qL). But then the definition of period requires

p ≤ p∗, which contradicts [A]. ♣

Computer exploration.

c1 Figure 1.2 summarizes the behavior of the dynamical system (1.1/1.3) in 0 ≤ x ≤ 1 for all 0 ≤ L ≤ 0. It

is easy to see that: (a) For 0 ≤ L ≤ L1 ≈ 0.4, the solutions are attracted to zero (xn → 0). (b) For

L1 ≤ L ≤ L2 ≈ 0.77, the solutions are attracted to a constant 0 < x∗ < 1 (xn → x∗). (c) At L2 another

bifurcation occurs, beyond which the solution is attracted to a period 2 solution.† (d) Continuing to increase

L, more bifurcations occur at values Ln, where period 2n−1 sequences ‡ become attractors. (e) What happens

with Ln, n large, and beyond is not clear from this picture. In what follows we will investigate this in more

detail by amplifying various regions of this bifurcation diagram.

† Use IterateCubiMap.m to check these are period 2 solutions and not separate possible fixed points.
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Figure 1.2: Bifurcation diagram for the map F .

How was the picture on the left done? Using the sug-

gestion in the statement item c1 “However, you should

not restrict yourself to this script only. For example

. . . ”, I wrote a script that, for each L-value, plots the xn-

values as dots in some preselected interval x1 ≤ x ≤ x2.

Then it stacks the plots (using many values of L) in a

2-D plot with L in the vertical coordinate, and x in the

horizontal. Each plotted sequence {xn} is processed as

follows: (i) Pick some random initial value 0 < x0 < 1.

(ii) Iterate the map n1 times, where n1 is fairly large (I

used n1 = 1000, 3000, and 10000 for the various plots)

so any transients are gone. (iii) Plot the next n2 iterates

(I used n2 = 1000). For L I used an equispaced grid in

the desired L-range (with either 1000 or 3000 values).

Note: it is important to control the size of the dots used to plot the xn. Too small: cannot see very much. Too large:

important features are obscured. In MatLab dot size is controlled by the ’MarkerSize’ option in the plot statement.

Use the same process for other periodic solutions we will identify.

‡ Here we are relying on t3a-t3b to identify periodic solutions.

c2 Below we dive into a more detailed exploration of the dynamical system, using the bifurcation diagram in

figure 1.2 as a guide. The answers to the questions in item c2 of the problem statement can be found below,

as follows: For c2a see [A-B]. For c2b see [B]. For c2c see [C]. For c2d see [E]. For c2e see [F-H].

[A] The critical value L1. Consider the left panel of figure 1.3. There we see that for 0 ≤ L < L1 ≈ 0.385 the

solutions are attracted to x = 0 (xn → 0 as n→∞), while for L above † L1 they are attracted to a value x∗ > 0.

† Up to L2, see the full bifurcation diagram in figure 1.1.

Explanation and analytical calculation of L1 and x∗. It is easy to see that for L “small”, the curve y = F (x) is

below y = x, so that there is only one fixed point (solution to x = F (x)), i.e.: x = 0. Furthermore, x = 0 is then

stable, because 0 < F ′(0) = Lpf < 1. When L crosses (going up) 1/pf two things happen: (i) x = 0 becomes

unstable, and (ii) another fixed point appears.2

We conclude that L1 =
1

pf
= 0.3849001794 . . . (1.5)

Next, to obtain x∗ we must find a positive solution to

x = Lpf x (1− x2); i.e.: 1 = Lpf (1− x2). Hence x∗ =

√
1−

L1

L
, (1.6)

which (of course) requires L > L1 to satisfy x∗ > 0.

Notice that there is also a negative, x = −x∗, fixed which arises for L > L1. We do not see it because we are only looking

at 0 ≤ x ≤ 1 — but F is odd, so anything that happens for x > 0 has a mirror reflection for x < 0. Hence the bifurcation at

L = L1 is the discrete analog of a (soft) pitchfork bifurcation.

[B] The critical value L2. Consider the right panel of figure 1.3. There we see that at L2 ≈ 0.770 another

bifurcation happens. The solutions switch from being attracted to the critical point x∗, to being attracted to a

period 2 cycle.

Note: pointed out before, the situation for L > L2 could correspond to two separate possible (stable) critical points arising. However,

using the script IterateCubiMap, you can easily see that this is not the case. Further: the calculation leading to (1.6) shows that

2 Because then y = F (x) goes above y = x to the right of x = 0, but must eventually cross below to reach F (1) = 0.
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the only critical points are x = 0 and x = ±x∗.
Analytical calculation of L2. The stability of x∗ is easy to ascertain from F ′(x∗) = 3− 2Lpf = µ. (1.7)

We can see that µ starts at µ = 1 at L = L1, and goes down as L increases

(making x∗ stable). However, when Lpf = 2, µ = −1,

beyond which x∗ is unstable. We conclude that L2 = 2L1 = 0.7698003589 . . . (1.8)

Figure 1.3: Bifurcation diagram details: near L1 and near L2. The left panel shows the region 0.3 ≤ L ≤ 0.4

and 0 ≤ x ≤ 0.2, while the right panel shows 0.7 ≤ L ≤ 0.8 and 0.6 ≤ x ≤ 0.8.

[C] From L2 to L∞. The left panel of figure 1.4 focuses on the bifurcations following L2, and shows L3 ≈ 0.861,

L4 ≈ 0.881, and L5 ≈ 0.885. At each of these bifurcations the attractor doubles 3 its period: from 2 to 4 at L3,

from 4 to 8 at L4, and from 8 to 16 at L5. The right panel of figure 1.4 (see also figure 1.5) shows that the pattern

(period doubling cascade) continues, with an infinite 4 sequence of critical points 0 < L1 < L2 < L3 < . . .

such that: for Ln < L < Ln+1 the attractor is a periodic solution of period 2n−1. In addition, the sequence is

bounded, hence it must have a limit L∞ = limn→∞ Ln = sup({Ln}).

By focusing on very small regions † of the bifurcation diagram of figure 1.2, one can get the following refined estimates

for the bifurcation values: †The process is time consuming (but straightforward), as it requires the use of fairly large values

for the parameters n1 and n2 introduced in figure 1.2; i.e.: n1 = O(106) and n1 = O(105).

L3 = 0.8606625 ± 5× 10−7; L4 = 0.8806638 ± 3× 10−7; L5 = 0.8849732± 2× 10−7;

L6 = 0.88589737± 4× 10−8; L7 = 0.88609535± 2× 10−8; . . .

L∞ = 0.88614935± 5× 10−8.

The accuracy shown here is the best possible with the method used, and double precision fixed point arithmetic

(about 16 digits) — for more details see remark 1.7. Notably, the accuracy in the calculation of Ln seems to improve

(a little) as n grows — but I do not know why this is so.

[D] Universality. The differences (∆L)n = Ln+1 − Ln decrease exponentially with n. Rounding to 7 digits:

∆1 = 0.3849002, ∆2 = 0.0908621, ∆3 = 0.0200013, ∆4 = 0.0043094, ∆5 = 0.0009242, ∆6 = 0.0001980.

Thus F1 = 4.236090, F2 = 4.542812, F3 = 4.641319, F4 = 4.662995, F5 = 4.667997, where Fn =
∆n+1

∆n
,

for a decrease ratio per n of 4 to 5.

In fact, it can be shown that lim
n→∞

Fn = δF1 , (1.9)

where δF1 ≈ 4.6692016091029 is the First Feigenbaum universal constant

(e.g.: see Peitgen, Jurgens, and Saupe; Chaos and Fractals, Springer Verlag, 1992).

3 Again: you should use IterateCubiMap to verify that, indeed, these are all periodic orbits of the stated period.
4 Numerically we cannot prove the sequence is infinite, but the evidence is strong, and can be backed up by analytical arguments.
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Figure 1.4: Bifurcation diagram beyond L2. The left panel shows the region 0.8550 ≤ L ≤ 0.8855 and 0.4 ≤ x ≤ 0.9

(zooms on L3, L4, and L5), while the right panel shows 0.8845 ≤ L ≤ 0.8865 and 0.4 ≤ x ≤ 0.9 (starting

above L4, with a period 8 solution, and going past the start of chaos).

Universal refers to the fact that δF1 appears for the sequence of bifurcations of any map xn+1 = F (xn, λ) with a

single (unimodal) quadratic maximum that increases with λ (Fλ > constant > 0).

[E] Crossing L∞; chaos. As L crosses L∞ the attractor stops being a periodic sequence, and switches to being

a (seemingly) random walk through an infinite set of points — you can see this in figure 1.5. The MatLab script

handed with this answer IterateCubiMapSelections has two values in this range preselected: L = 0.886150 (set input

ns = 6) and L = 0.886160 (set input ns = 7). Of course, this attractor is not random (cannot be, the system is

deterministic), but chaotic. For a peek at what chaos is, see remark 1.6.

Figure 1.5: Bifurcation diagram from period 8 to beyond L∞. The right panel in figure 1.4 is very hard to read; hence,

using the fact that the picture has an 8-fold symmetry (corresponding to the period 8 solutions chain of

bifurcations), we show here, on the left panel, the third branch from the left in the right panel of figure 1.4.

That is: 0.8545 ≤ L ≤ 0.8865 and 0.55 ≤ x ≤ 0.60. The right panel shows further detail, from period 32 and

up only, corresponding to 0.8860 ≤ L ≤ 0.8865 and 0.55 ≤ x ≤ 0.60.
[F] Beyond L∞ (more periodic orbits, more period doubling, more chaos, . . . ). Figure 1.1 (better yet, figure 1.5)

indicates that chaos fills up large chunks of the region L > L∞, but that the space is shared with windows where

the attractor is a periodic orbit, which undergoes period doubling within the window.‡

‡ There is an infinity of windows (most very small and hard to see), including windows within windows.



18.353 MIT, (Rosales) Computer exercises with a 1-D map v2. 9

Let us now explore this a little.

Period 6 window, left panel of figure 1.6. The window starts with a period 6 attractor at the bottom, which then

undergoes a sequence of period doublings (i.e.: periods 6, 12, 24, . . . ) entirely similar to that of the {Ln} we studied

before. This includes a limiting “L∞”, followed by chaos and periodic windows within the chaos — and, within these

windows, more period doubling, etc., ad infinitum!

Figure 1.6: Period 6 and period 5 windows. The left panel (0.898 < L < 0.900 and 0.35 < x < 0.95) shows the period

6 window. The right panel (0.9210 < L < 0.9235 and 0.30 < x < 0.95) shows the period 5 window.

Period 5 window, right panel of figure 1.6. The situation is entirely similar to that of the period 6 window.

Period 3 window, left panel of figure 1.7. The situation is entirely similar to that of the period 6 window.

Figure 1.7: Period 3 window and period 2 to 3. The left panel (0.942 < L < 0.953 and 0.15 < x < 0.99) shows the period 3

window. Right panel (0.85 < L < 0.95 and 0 < x < 1) shows: bifurcation diagram from period 2 to period 3.

[G] Intermittent chaos. Within the chaos regions of the bifurcation diagram (see right panel of figure 1.5, right panel

of figure 1.7, and figure 1.8) dark lines can be easily seen. These lines corresponds to regions that the orbit visits more

frequently, which causes a higher density of dots there. They are caused by a phenomena entirely analogous to the

“critical slow down” that we saw in the lectures for the dynamical system ẋ = f(x, λ) when a saddle node bifurcation

is about to happen (i.e.: a “phantom” critical point). In this case, the underlying mechanism is “phantom” periodic

orbits. Thus, as the chaotic orbit transits these regions, it more-or-less tracks the “phantom” orbit for a while, and

then resumes its chaotic bouncing. The net effect is intermittent chaos, whereby the orbit appears to consist of a

periodic orbit interrupted by burst of chaos.
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Figure 1.8: Darker lines signaling intermittency. Left (0.897 < L < 0.945 and 0.2 < x < 0.95): bifurcation diagram; period 6

to 3 windows. Right (0.896 < L < 0.902 and 0.4 < x < 0.65); detail: left side of the period 6 window.

For an example of intermittent chaos, see figure 1.9. Note that the value of L used for the figure, L = 0.898040,

is one of the ones pre-loaded into the MatLab script IterateCubiMapAttSensi — which shows that sensitivity to

perturbations occurs for this L-value. By the way: when you run IterateCubiMapAttSensi, you should run it several

times for a given input. This because the behavior of the perturbation may depend on the random initial x0, and

what you want to see is the typical behavior.

Figure 1.9: Period 6 intermittent chaos.

On the left: plot of xn+6 − xn (as a function of n) for the map iterates

xn+1 = Lpf xn (1 − x2
n), with L = 0.898040 — after 3 × 106

iterations, to ensure that any transients are gone. The plot was done

using the MatLab script IterateCubiMap.

The value of L used is slightly below the start of the period 6 window,

so that there is a “ghost” of a stable period 6 solution under the hood.

Via the “critical slowing down” phenomena, this causes the solution to be

almost trapped when it gets close to the ghost.

The result of this is a chaotic solution with intervals where it is close to a

period 6 sequence, as evidenced by the plot on the left. ♣

[H] Self-similarity. The bifurcation diagram in figure 1.2 is self-similar (fractal): smaller portions of it reproduce the

whole pattern — e.g.: see the windows description in [F], as well as: figure 1.5, figure 1.7, and figure 1.8 (all of which

display this phenomena prominently). As we will see later, there is also universality in this behavior. For example:

all the unimodal maps with a quadratic maximum exhibit the same pattern of windows (which windows show up,

and how they are ordered).

Remark 1.6 Chaos and sensitivity to small perturbations. In the problem statement we were pretty vague as to what chaos

is; “defining” it as simply “non-periodic (see remark 1.2). Naively, as something that “looks” random. Here we introduce a

second property of chaos, which together with non-periodic and bounded (in our case bounded is automatic) offers a reasonable

characterization of chaos. This second property is . . . . . . . . the solutions in the attractor are sensitive to small perturbations.

Important: while periodic attractors consist of just one orbit, chaotic attractors are sets with infinitely many orbits.

What this means is that when a chaotic solution is slightly perturbed, the perturbation grows exponentially in time — as long as it

remains small. The script IterateCubiMapAttSensi is designed to test this property. This is done as follows: First. Iterate the map

for 1 ≤ n ≤ n1, where n1 is large enough that transients decay and xn would be in the attractor for n > n1 (e.g.: n1 = 106).

Second. Continue the iteration for n1 < n ≤ n1 + n3 (where n3 is also large). In addition, start a second iteration, with
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perturbed initial data yn1 = xn1 + δ, where δ is small (e.g.: δ = 10−5) — this also for n1 < n ≤ n1 + n3. Third. Plot the

difference yn − xn for n1 < n ≤ n1 + n3.

When the test is used on a periodic attractor, the perturbation |yn − xn| never grows beyond a few times the initial size, and

it eventually decays. On the other hand, for a chaotic attractor the perturbation grows (at first exponentially) till it reaches a

size orders of magnitude larger than δ, and then it does not decay (although its size may fluctuate wildly). You should test these

facts by running the script with its pre-loaded examples, or input your own.†

†The script includes a parameter n2 — plot the attractor for n1 < n ≤ n1 + n2. Do not take n2 large, or you will not see much.

Sensitivity to perturbations is a very important property of chaos, and the basis for the “butterfly effect”.

The term “butterfly effect” was coined Edward Lorenz, in the 1960’s, possibly inspired by the short fiction story “A Sound of Thunder” (Ray

Bradbury, Collier’s magazine, June 28, 1952; and Bradbury’s collection “The Golden Apples of the Sun”, 1953). ♣

Figure 1.10: Numerical errors make bifurcations fuzzy.

Detail of the bifurcation diagram in figure 1.2 near L5. Recall that L5 is the

critical value at which the attractor goes from period 8 to period 16 — in the

bifurcation diagram it appears as 8 same-L “forks”. The picture is a detail near

one of the forks; specifically, for the region: 0.88497315 < L < 0.88497330

and 0.44195 < x < 0.44199, using 1000 equispaced values of L. For each L

a random x0 was selected and then 106 map iterations were performed before

starting to plot (which was done for the next 2.5× 105 iterations).

Because of the mechanism explained in remark 1.7, the iterates cannot (nu-

merically) quite converge to the attractor when L is close to a critical value,

which results in the bifurcation being smeared — thus limiting the precision

with which the critical value can be computed.

Remark 1.7 Errors in computing thresholds. The first thing to point out is that, as L crosses a Ln going up, the “perturbation”

to the prior attractor (e.g: failure to satisfy the period 2 condition) has size O(
√
L− Ln) when L− Ln is small.‡

‡The script IterateCubiMapSelections includes examples showing this.

Now, if your have only 16 significant digits, 5 you can only tell that you “have crossed Ln” only once
√
L− Ln ≈ 10−16, or

larger. You cannot tell the effect of smaller changes because they are beyond the resolution you have. This gives you the largest

penalty: at best you can hope for 8 digits in Ln.

But this is not the end of it. You also have to consider the fact that in fixed point calculations, the last digit jumps around. The

behavior is not “random” (i.e.: it is deterministic 6) but its effect is quite similar to a random perturbation. Because the approach

to the attractor is very slow close to Ln, these perturbations are able to derail it, creating a fuzzy region near Ln, where it is not

clear which side of the critical number you are — see figure 1.10. This makes things worse, and more digits may be lost.† ♣

† In figure 1.10 the fuzzy region is small; size O(10−7) in L. For other Ln it is larger (or slightly smaller). The stronger

the stability of the involved attractors, the smaller the region is.

THE END.

5 Technically, I should be doing this analysis using binary notation, but at the rough level here this is not important.
6If you run a calculation twice, in the same computer, you get the same answer.


