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1 Liapunov exponents for 1-D maps #02

1.1 Statement: Liapunov exponents for 1-D maps #02

Compute the Liapunov exponent, and produce a figure analog to figure 10.5.2 in Strogatz’s book (see example

10.5.3 there) for the 1-D maps xn+1 = f(xn) below. In all the cases, given the range of r selected, justify the

selected range for x.

Meaning of “justify”. Show that the x-region is such that it may contain an attractor, because either: (a) It is trapping; an orbit

starting there stays there; or (b) Orbits starting outside the region diverge to infinity, so that any attractor has to be inside.

1. The cosine map f(x) = r cos(x), with −5 ≤ r ≤ 5 and −5 ≤ x ≤ 5.

2. The quartic map f(x) = r (1− (2x− 1)4), with 0 ≤ r ≤ 1 and 0 ≤ x ≤ 1.

3. The cusp075 map f(x) = r (1− zµ), with 0 ≤ r ≤ 1 and 0 ≤ x ≤ 1, where z = |2x− 1| and µ = 3/4.

Important. df/dx for this map involves zµ−1. To avoid a potential division by zero, when calculating use z =

|2x− 1|+ ε, where ε is very small; e.g.: ε = 10−200.

In all cases, plot not just the region listed above, but do a detail of the r-ranges where the exponent transitions

from negative to positive. See also the optional task below, after the hints.

Hints and related.

1
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h1. The process to follow to calculate the Liapunov exponent is explained in example 10.5.3 of Strogatz book

[also in the lectures]. At any rate, see the sample/sketch MatLab script at the end of the problem statement.

h2. If you use MatLab, “vectorize” the operation, so that you do all the r’s simultaneously.

h3. In MatLab “print -dpng FigureName” added to the script saves the figure as a small png file — and it is more

reliable than saving the figure using the figure window GUI. Please be careful with the figure sizes, do not

upload monster size answers. As a reference: in my answer the pictures take about 30kb each.

Optional task. For the case of the cusp075 map, plot the Liapunov exponent versus r for the region where the

Liapunov exponent transitions from negative to positive — this is, roughly 0.52 < r < 0.68. Use for this a

program following the outline of the “sample/sketch MatLab script” below. Run the program a few times (without

changing any parameters) and do a few plots. What do you see? (you should be seeing something that “should

not” be, remember that you are looking at a deterministic system). Explain why you see what you see. Note:

The explanation is simple and clean. If you find yourself making convoluted arguments, you are on the wrong track!

Hints: (i) Do an orbit/bifurcation diagram for the map. (ii) Initialize the iterations that compute the Liapunov

exponent with x0 = 0.51. (iii) Initialize the iterations that compute the Liapunov exponent with x0 = 0.01.

Sample/sketch MatLab script. These are the parameters that you will need to assign values to:

r1 = Lower value of the parameter r range to explore.

r2 = Upper value of the parameter r range to explore.

N = Number of r-values to use between r1 and r2. Because the Liapunov exponent as a function of r can be

very “wiggly”, take N large, say: N = 1000, or larger.

x1 = Lower value of x considered.

x2 = Upper value of x considered.

nb = Number of map iterations before the calculation starts. This should be a fairly large number,

say nb = 5000, to allow the iterates to settle on the attractor.

np = Number of iterations used to calculate the Liapunov exponent. Again, a fairly large number, to

obtain an accurate calculation. Note that the size of the error is, typically, O(1/np)!

In addition, you will need two sub-scripts, y = Fun(r, x) and y = dFun(r, x), which compute the function f(x),

and the absolute value of its derivative, |df/dx|. The basic script is then:

r = r1 + (r2 - r1)*(0:N)/N;

x = x1 + (x2 -x1)*rand(size(r)); % This initializes the iteration.

for j=1:nb; x = Fun(r, x); end; % Iterate nb times to approach the attractor.

nf = nb + np;

le = zeros(size(r)); % Will contain the Liapunov exponent for each value in the array r.

for j=(nb+1):nf

x = Fun(r, x);

le = le + (1/np)*log(dFun(r, x));

end

Now all that remains to do is plot le versus r.

1.2 Answer: Liapunov exponents for 1-D maps #02

The answer to the three parts, and the optional task in § 1.2.1, follows below. Even if you did not attempt to do the

optional task, please read section 1.2.1.

Remark. The Liapunov exponent is negative within any periodic window (where the attractor is a periodic orbit),

and goes to −∞ at super-stable periodic orbits1 — though lack of numerical resolution cuts these downward “dives”

1 Orbits including a point with vanishing Map derivative are super-stable: small perturbations to them vanish at super-exponential rate.
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to a finite value. In the chaotic regions the Liapunov exponent is positive. However the chaotic regions may contain

a fractal structure of periodic windows (which are very hard to resolve beyond the larger ones). Note also that at

period doubling bifurcations the Liapunov exponent reaches zero, but does not cross to positive. These features are

evident in the plots of the Liapunov exponents below. ♣

1. The Liapunov exponent calculation for the cosine map f(x) = r cos(x), with −5 ≤ r, x ≤ 5, is shown in

figure 1.1. Details near the onset of chaos (on the r > 0 side) are shown in figure 1.2. Here the left panel

Figure 1.1: Liapunov exponent: cosine map.

Liapunov exponent (Li(r)) for the cosine map, in

the range: −5 ≤ r, x ≤ 5. Sensitive dependence

to initial conditions, and chaos, occurs for Li > 0

(dashed red line). Notice also the multiple “down-

ward spikes”, corresponding to super-stable orbits

within periodic windows.

Justification of the x-range: since |f(x)| ≤ r, the

attractor must be contained within |x| ≤ r.

Figure 1.2: Details of the Liapunov exponent near the onset of chaos for the cosine map — see the text for description.

shows the range 1.3 < r < 2.5, with −4.5 < Li < 0.5 (the Li = 0 level is indicated by the dashed red

line). The right panel shows the range 1.974 < r < 1.978, with −0.30 < Li < 0.1. Note that, as the

resolution in r is increased, more periodic windows (downward spikes through Li = 0) become visible.

2. The Liapunov exponent calculation for the quartic map f(x) = r (1 − (2x − 1)4), with 0 ≤ r, x ≤ 1, is

shown on the left panel in figure 1.3. The right panel shows a detail near the onset of chaos, for 0.96 ≤ r ≤
0.98. As in all cases, the dashed red line indicates the instability threshold Li = 0. Sensitive dependence

on initial conditions, and chaos, occur for Li > 0. Figure 1.4 shows finer detail near the onset of chaos,

for 0.967 ≤ r ≤ 0.969 on the left panel, and 0.9686 ≤ r ≤ 0.9687 on the right panel. As usual, as the

resolution in r is increased, more periodic windows (downward spikes through Li = 0) become visible.

Justification of the x-range: It is easy to see that, for 0 ≤ x ≤ 1, 0 ≤ f(x) ≤ r. Hence for 0 ≤ r ≤ 1 the

unit interval is mapped onto itself.
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Figure 1.3: Liapunov exponent (Li(r)) for the quartic map and detail — see the text for description.

Figure 1.4: Quartic map: Liapunov exponent Li(r). Details near the onset of chaos — see text for description.

3. The Liapunov exponent calculation for the cusp075 map f(x) = r (1−|2x−1|0.75), with 0 ≤ r, x ≤ 1, is

shown on the left panel in figure 1.5. The other panels shows a detail near the onset of chaos, for 0.52 ≤ r ≤
0.70. As in all cases, the dashed red line indicates the instability threshold Li = 0. Sensitive dependence on

initial conditions, and chaos, occur for Li > 0. Note that the two right panels in Figure 1.5 correspond to

the same range in r; these are two runs of exactly the same program, but the pictures differ; why? This is

the question posed in the optional task, for the answer see § 1.2.1.

Justification of the x-range: It is easy to see that, for 0 ≤ x ≤ 1, 0 ≤ f(x) ≤ r. Hence for 0 ≤ r ≤ 1 the

unit interval is mapped onto itself.

1.2.1 Optional task

An (incorrect) “obvious” answer to why the two right panels in figure 1.5 are not the same is: this is because the

program computing them 2 starts each sequence with a random x0. As we will see, there is some truth to this,

but this cannot be the full answer — if it was, we would see the same phenomena with all the Liapunov exponent

calculations, and we do not! The idea is that, even though we start with a random x0, we compute the sequence

2 See sample/sketch MatLab script in the problem statement.
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Figure 1.5: Liapunov exponent (Li(r)) for the cusp075 map and details — see the text for description.

for many xn, so it settles on the attractor; and only then we begin the calculation of the Liapunov exponent.

The key point here is the phrasing “the attractor”, for what if there is more than one attractor? In this case the

sequence used to compute the Liapunov exponent would settle, randomly, on one of the possible attractors, giving rise

to the behavior observed in figure 1.5. To check this hypothesis, we compute an orbit diagram for the cusp075 map,

shown figure 1.6. The left panel shows the full orbit diagram, for 0 ≤ r ≤ 1, while the two right panels show a

Figure 1.6: Orbit diagram for the cusp075 map, f(x) = r (1− |2x− 1|3/4), and detail — see text for description.

detail for 0.50 < r < 0.75 (same detail). From this figure we can see that

a. There are two attractors. In blue: the fixed point x = 0, stable for 0 ≤ r < 2/3. In red: a chaotic attractor,

which exists for rc < r ≤ 1, some 0 < rc ≈ 0.54368897 < 2/3.

b. The two attractors co-exist for rc < r < 2/3. A sequence starting at a random x0 may end up at one or the

other. This is why the two right panels in figures 1.5 and 1.6 differ, even though they are for the same parameters.

To double check these conclusions, we recompute the two right panels in figure 1.5 (i.e.: Liapunov exponent for

0.52 ≤ r ≤ 0.70), but instead of starting the sequences from a random x0, we start them from: (i) x0 very close

to 1/2 — left panel in figure 1.7; and (ii) x0 very small — right panel in figure 1.7. As expected, the “oscillations”

that appear in figure 1.5 vanish. Furthermore, notice that

c. When x0 is close to 1/2 (left panel in figure 1.7) the sequence is attracted to the fixed point at the origin for

r < rc (negative Liapunov exponent) and to the “red” attractor for r > rc (positive Liapunov exponent).

b. When x0 is small (right panel in figure 1.7) the sequence is attracted to the fixed point at the origin for

r < 2/3 (negative Liapunov exponent) and to the “red” attractor for r > 2/3 (positive Liapunov exponent).

c. The red attractor is chaotic. This follow because it has a positive Liapunov exponent, so that it exhibits

sensitivity to initial conditions, while being non-trivial.
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Figure 1.7: Cusp075 map: Liapunov exponent Li(r). Details near the onset of chaos — see text for description.

b. Note that we observe neither period doubling, nor any periodic windows, for the cusp075 map. The

Liapunov exponent for the red attractor behaves pretty smoothly for r > rc. The transition to chaos for the

cusp075 map seems to be very different from the one that occurs for the Logistic map. The red attractor

shows up, suddenly, “fully formed” and with O(1) size for r > rc. Interestingly, this attractor does not seem

to be fractal, and “fills in” a full interval 3 in x for each value r > rc,
† In particular: it should have box

and correlation dimension = 1.

† I only have partial analysis and numerical evidence for this. I cannot prove it, and I have not found a reference

where it is proved.

Figure 1.8: Orbit diagram for the cusp075 map, and detail — see text for description.

Finally we recompute the orbit diagram for the cusp075 map, for the same parameter ranges, 0 < r < 1 and 0.5 <

r < 0.75, as in figure 1.6. However, instead of a random initial x0 for each r, we do two computations: one starting

near zero and another starting near 1/2. The result is shown in figure 1.8. Notice that the “gaps” in figure 1.6 are

gone. The pictures illustrate how the red attractor pops up “out of nowhere” for r ≥ rc ≈ 0.54368897.

3 Except for, at most, a discrete set of points.
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2 Newton’s method in the complex plane #01
2.1 Statement: Newton’s method in the complex plane #01

Suppose that you want to solve an equation, g(x) = 0. Then you can use Newton’s method, which is as follows:

Assume that you have a “reasonable” guess, x0, for the value

of a root. Then the sequence xn+1 = f(xn), n ≥ 0, where f(x) = x−
g(x)

g′(x)
, (2.1)

converges (very fast) to the root.

Remark 2.1 (The idea). Assume an approximate solution g(xa) ≈ 0. Then write xb = xa + δx to improve it,

where δx is small. Then 0 = g(xa + δx) ≈ g(xa) + g′(xa) δx ⇒ δ x ≈ − g(xa)
g′(xa)

, and (2.1) follows.

Of course, if x0 is not close to a root, the method may not converge. Even if it converges, it may converge to

a root that is far away from x0, not necessarily the closest root. In this problem we investigate the behavior of

Newton’s method in the complex plane, for arbitrary starting points. ♣

Consider iterations of the map generated by Newton’s

method for the roots of z3 − 1 = 0. i.e.: zn+1 = f(zn) =

(
2

3
+

1

3 z3n

)
zn, n ≥ 0, (2.2)

where 0 < |z0| <∞ is arbitrary, and the zn are

complex numbers.

Note that ζ1 = 1, ζ2 = ei 2π/3 =
1

2
(−1 + i

√
3), and ζ3 = ei 4π/3 =

1

2
(−1− i

√
3), (2.3)

are the roots

of z3 = 1.

Your tasks: Write a computer program to calculate the orbits {zn}∞n=0. Then, for every initial point z0, draw a

colored dot at the position of z0, where the colors are picked as follows:

zn → ζ1, green. zn → ζ2, red. zn → ζ3, blue. No convergence, black. (2.4)

What do you see? Do blow ups of the limit regions between zones.

Hints and practical numerical considerations.

h1. Divide the region where the initial data z0 will be picked [I suggest the square −2 ≤ Re(z0), Im(z0) ≤ 2]

into pixels, then pick a z0 at the center of each pixel, and color the pixel according to (2.4).

h2. If you use MatLab, do not plot points. As suggested in item h1 plot pixels — use the command image(x, y, C)

to plot, where x = Re(z0) and y = Im(z0). Why? Because using points leaves a lot of unpainted space in

the figure, and gives huge file sizes if you use enough pixels to get a good picture.

h3. Deciding convergence. Deciding that the sequence converges is easy: once zn gets “close enough” to one of

the roots, then the very design of Newton’s method guarantees convergence. Thus, given a z0, compute zN
for some large N , and check if |zN − ζj| < δ for one of the roots and some “small” tolerance δ — which does

not have to be very small, in fact δ = 0.25 is good enough. If this criteria is not satisfied for any of the roots,

then classify the sequence starting at z0 as “non-convergent”.

You can get reasonable pictures with N = 50 iterations on a 150 × 150 grid — a larger N is needed when

refining near the boundary between zones. For the answer I used a 500 × 500 grid and N = 100 iterations

— which I increased to N = 200 and N = 300 for the blow ups of details.

h4. Compute in parallel. If you use MatLab, make sure to do all the sequences (one for each pixel) in parallel,

using vector/matrix operations. This is much faster than a “for loop”.

h5. Avoid division by zero. Note that (2.2) ceases to make sense if zn = 0 — classify this as non-convergence.

This can cause a problem if you are computing all the sequences in parallel, because this requires all of them

to be computed from z0 to zN . One way to get around this (in MatLab) is as follows: Place all the iterates in

a complex matrix Zn, where the entry (p, q) corresponds to zn for the sequence starting in the (p, q) pixel.

Then, before computing the next iterate, execute: Zn = Zn + del*(Zn == 0), where del = 1e-30. † After
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this sequences with zn = 0 will produce a very large zn+1, which is guaranteed not return to the vicinity of

the roots ζj for many iterations (more than 300), resulting in “effective” non-convergence. ‡

† This replaces zero entries in Zn by del, because the logical operator (Zn == 0) yields zero for all non-zero entries in Zn,

and one for zero entries.

‡ The result will be zn+1 ≈ (1/3)1060, while for zn large (2.2) reduces to zn+1 ≈ (2/3) zn. Hence returning to

zn+M = O(1) requires, roughly, (2/3)M 1060 = O(1).

2.2 Answer: Newton’s method in the complex plane #01

Figure 2.1 show the results of our calculations. Note the fractal nature of the boundary between the basins of attraction
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Figure 2.1: (Newton’s method in the complex plane #01). Convergence zones for the z3 = 1 Newton’s map iterates,

using the color scheme in (2.4), with a 500× 500 pixel grid. Left to right and top to bottom: (a) N = 100 iterations,

for −2 < x, y < 2. The crosses are the roots ζj . (b) N = 200 iterations, for 0.2 < x < 0.6 and 0.4 < y < 0.8. (c)

N = 300 iterations, for 0.35 < x < 0.45 and 0.4 < y < 0.5. (d) N = 300 iterations, for 0.39 < x < 0.42 and

0.44 < y < 0.47. In (a–c) the square with a yellow boundary indicates the region displayed in the next picture.

for each root: as we zoom in, the object appears as a smaller (but distorted) copy of itself. Non-trivial self-similarity 4

4 A line in the plane is also self-similar, but it has trivial structure.
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is the hallmark of a fractal. Sets like this (boundaries between convergence regions of complex analytic iterations)

are called Julia sets.

The attracting basins are Fatou sets. The sets are named after Gaston Julia and Pierre Fatou, two math-

ematicians that pioneered the study of complex dynamics — e.g., see: G. Julia, Mémoire sur l’iteration des

fonctions rationnelles, Journal de Mathématiques Pures et Appliquées, 8: 47–245, 1918, and P. Fatou, Sur les

substitutions rationnelles, Comptes Rendus de l’Académie des Sciences de Paris, 164: 806–808 and vol. 165,

pp. 992–995, (1917).

The orbits within the Julia set are chaotic. These orbits are, generally, not periodic (but recurrent), and small

differences in zn grow exponentially with n (sensitive dependence on initial conditions). However, computing these

orbits is extremely hard, as perturbations out of the Julia set make the resulting orbit convergent.

THE END.


