Answers to P-Set \# 07, (18.353/12.006/2.050)j MIT (Fall 2023)

Rodolfo R. Rosales (MIT, Math. Dept., room 2-337, Cambridge, MA 02139)

December 1, 2023

Contents

1 Liapunov exponents for 1-D maps \#02 1
1.1 Statement: Liapunov exponents for 1-D maps \#02 1
1.2 Answer: Liapunov exponents for 1-D maps \#02 2
1.2.1 Optional task 4
2 Newton's method in the complex plane \#01 7
2.1 Statement: Newton's method in the complex plane \#01 7
2.2 Answer: Newton's method in the complex plane \#01 8
List of Figures
1.1 Liapunov exponent: cosine map 3
1.2 Liapunov exponent: cosine map 3
1.3 Liapunov exponent: quartic map 4
1.4 Liapunov exponent: quartic map 4
1.5 Liapunov exponent: cusp075 map 5
1.6 Orbit diagram: cusp075 map 5
1.7 Liapunov exponent: cusp075 map 6
1.8 Orbit diagram: cusp075 map 6
2.1 Newton's method in the complex plane \#01. Convergence zones for the Newton's map iterates 8

1 Liapunov exponents for 1-D maps \#02

1.1 Statement: Liapunov exponents for 1-D maps \#02

Compute the Liapunov exponent, and produce a figure analog to figure 10.5.2 in Strogatz's book (see example 10.5.3 there) for the 1-D maps $\boldsymbol{x}_{\boldsymbol{n + 1}}=f\left(x_{n}\right)$ below. In all the cases, given the range of r selected, justify the selected range for x.
Meaning of "justify". Show that the x-region is such that it may contain an attractor, because either: (a) It is trapping; an orbit starting there stays there; or (b) Orbits starting outside the region diverge to infinity, so that any attractor has to be inside.

1. The cosine map $f(x)=r \cos (x)$, with $-5 \leq r \leq 5$ and $-5 \leq x \leq 5$.
2. The quartic map $f(x)=r\left(1-(2 x-1)^{4}\right)$, with $0 \leq r \leq 1$ and $0 \leq x \leq 1$.
3. The cusp075 map $f(x)=r\left(1-z^{\mu}\right)$, with $0 \leq r \leq 1$ and $0 \leq x \leq 1$, where $z=|2 x-1|$ and $\mu=3 / 4$. Important. $\mathrm{d} f / \mathrm{d} \boldsymbol{x}$ for this map involves $\boldsymbol{z}^{\mu-1}$. To avoid a potential division by zero, when calculating use $z=$ $|2 x-1|+\epsilon$, where ϵ is very small; e.g.: $\epsilon=10^{\mathbf{- 2 0 0}}$.

In all cases, plot not just the region listed above, but do a detail of the r-ranges where the exponent transitions from negative to positive. See also the optional task below, after the hints.

Hints and related.
h1. The process to follow to calculate the Liapunov exponent is explained in example 10.5.3 of Strogatz book [also in the lectures]. At any rate, see the sample/sketch MatLab script at the end of the problem statement.
h2. If you use MatLab, "vectorize" the operation, so that you do all the \boldsymbol{r} 's simultaneously.
h3. In MatLab "print -dpng FigureName" added to the script saves the figure as a small png file - and it is more reliable than saving the figure using the figure window GUI. Please be careful with the figure sizes, do not upload monster size answers. As a reference: in my answer the pictures take about 30 kb each.

Optional task. For the case of the cusp075 map, plot the Liapunov exponent versus \boldsymbol{r} for the region where the Liapunov exponent transitions from negative to positive - this is, roughly $\mathbf{0 . 5 2}<\boldsymbol{r}<\mathbf{0 . 6 8}$. Use for this a program following the outline of the "sample/sketch MatLab script" below. Run the program a few times (without changing any parameters) and do a few plots. What do you see? (you should be seeing something that "should not" be, remember that you are looking at a deterministic system). Explain why you see what you see. Note: The explanation is simple and clean. If you find yourself making convoluted arguments, you are on the wrong track! Hints: (i) Do an orbit/bifurcation diagram for the map. (ii) Initialize the iterations that compute the Liapunov exponent with $\boldsymbol{x}_{\mathbf{0}}=\mathbf{0 . 5 1}$. (iii) Initialize the iterations that compute the Liapunov exponent with $\boldsymbol{x}_{\mathbf{0}}=\mathbf{0 . 0 1}$.

Sample/sketch MatLab script. These are the parameters that you will need to assign values to:
$r 1=$ Lower value of the parameter r range to explore.
$r 2=$ Upper value of the parameter r range to explore.
$\mathrm{N}=$ Number of r -values to use between r 1 and r2. Because the Liapunov exponent as a function of r can be very "wiggly", take N large, say: $\mathrm{N}=1000$, or larger.
$\mathrm{x} 1=$ Lower value of x considered.
$\mathrm{x} 2=$ Upper value of x considered.
$\mathrm{nb}=$ Number of map iterations before the calculation starts. This should be a fairly large number, say $\mathrm{nb}=5000$, to allow the iterates to settle on the attractor.
$\mathrm{np}=$ Number of iterations used to calculate the Liapunov exponent. Again, a fairly large number, to obtain an accurate calculation. Note that the size of the error is, typically, $\boldsymbol{O}(\mathbf{1} / \boldsymbol{n p})$!
In addition, you will need two sub-scripts, $y=\operatorname{Fun}(r, x)$ and $y=d F u n(r, x)$, which compute the function $\boldsymbol{f}(\boldsymbol{x})$, and the absolute value of its derivative, $|\mathrm{d} f / \mathrm{d} \boldsymbol{x}|$. The basic script is then:

```
\(r=r 1+(r 2-r 1)^{*}(0: N) / N ;\)
\(x=x 1+(x 2-x 1) *\) rand \((\operatorname{size}(r)) ;\) This initializes the iteration.
for \(j=1: n b ; x=\operatorname{Fun}(r, x)\); end; \% Iterate \(n b\) times to approach the attractor.
\(\mathrm{nf}=\mathrm{nb}+\mathrm{np}\);
le \(=\) zeros(size(r)); \% Will contain the Liapunov exponent for each value in the array \(r\).
for \(\mathrm{j}=(\mathrm{nb}+1)\) :nf
    \(x=\operatorname{Fun}(r, x)\);
    \(\mathrm{le}=\mathrm{le}+(1 / \mathrm{np})^{*} \log (\mathrm{dFun}(r, x)) ;\)
end
```

Now all that remains to do is plot le versus r.

1.2 Answer: Liapunov exponents for 1-D maps \#02

The answer to the three parts, and the optional task in § 1.2.1, follows below. Even if you did not attempt to do the optional task, please read section 1.2.1.
Remark. The Liapunov exponent is negative within any periodic window (where the attractor is a periodic orbit), and goes to $-\infty$ at super-stable periodic orbits ${ }^{1}$ - though lack of numerical resolution cuts these downward "dives"
${ }^{1}$ Orbits including a point with vanishing Map derivative are super-stable: small perturbations to them vanish at super-exponential rate.
to a finite value. In the chaotic regions the Liapunov exponent is positive. However the chaotic regions may contain a fractal structure of periodic windows (which are very hard to resolve beyond the larger ones). Note also that at period doubling bifurcations the Liapunov exponent reaches zero, but does not cross to positive. These features are evident in the plots of the Liapunov exponents below.

1. The Liapunov exponent calculation for the cosine map $f(x)=r \cos (x)$, with $-\mathbf{5} \leq r, x \leq 5$, is shown in figure 1.1. Details near the onset of chaos (on the $\boldsymbol{r}>\mathbf{0}$ side) are shown in figure 1.2. Here the left panel

Figure 1.1: Liapunov exponent: cosine map.
Liapunov exponent $\left(\boldsymbol{L}_{\boldsymbol{i}}(\boldsymbol{r})\right)$ for the cosine map, in the range: $-\boldsymbol{5} \leq r, \boldsymbol{x} \leq 5$. Sensitive dependence to initial conditions, and chaos, occurs for $L_{i}>0$ (dashed red line). Notice also the multiple "downward spikes", corresponding to super-stable orbits within periodic windows.
Justification of the \boldsymbol{x}-range: since $|f(x)| \leq r$, the attractor must be contained within $|x| \leq r$.

Figure 1.2: Details of the Liapunov exponent near the onset of chaos for the cosine map - see the text for description.
shows the range $1.3<r<2.5$, with $-4.5<\boldsymbol{L}_{\boldsymbol{i}}<\mathbf{0 . 5}$ (the $\boldsymbol{L}_{\boldsymbol{i}}=\mathbf{0}$ level is indicated by the dashed red line). The right panel shows the range $1.974<r<1.978$, with $-0.30<L_{i}<0.1$. Note that, as the resolution in r is increased, more periodic windows (downward spikes through $L_{i}=0$) become visible.
2. The Liapunov exponent calculation for the quartic map $f(x)=r\left(\mathbf{1}-(\mathbf{x}-\mathbf{1})^{4}\right)$, with $\mathbf{0} \leq r, x \leq \mathbf{1}$, is shown on the left panel in figure 1.3. The right panel shows a detail near the onset of chaos, for $\mathbf{0 . 9 6} \leq \boldsymbol{r} \leq$ $\mathbf{0 . 9 8}$. As in all cases, the dashed red line indicates the instability threshold $\boldsymbol{L}_{\boldsymbol{i}}=\mathbf{0}$. Sensitive dependence on initial conditions, and chaos, occur for $\boldsymbol{L}_{\boldsymbol{i}}>\mathbf{0}$. Figure 1.4 shows finer detail near the onset of chaos, for $0.967 \leq r \leq 0.969$ on the left panel, and $0.9686 \leq r \leq 0.9687$ on the right panel. As usual, as the resolution in r is increased, more periodic windows (downward spikes through $L_{i}=0$) become visible.

Justification of the \boldsymbol{x}-range: It is easy to see that, for $\mathbf{0} \leq \boldsymbol{x} \leq \mathbf{1}, \mathbf{0} \leq \boldsymbol{f}(\boldsymbol{x}) \leq \boldsymbol{r}$. Hence for $\mathbf{0} \leq \boldsymbol{r} \leq \mathbf{1}$ the unit interval is mapped onto itself.

Figure 1.3: Liapunov exponent $\left(L_{i}(r)\right)$ for the quartic map and detail - see the text for description.

Figure 1.4: Quartic map: Liapunov exponent $\boldsymbol{L}_{\boldsymbol{i}}(\boldsymbol{r})$. Details near the onset of chaos — see text for description.
3. The Liapunov exponent calculation for the cusp075 map $f(x)=r\left(\mathbf{1}-|\mathbf{2}-\mathbf{1}|^{\mathbf{0 . 7 5}}\right)$, with $\mathbf{0} \leq r, x \leq \mathbf{1}$, is shown on the left panel in figure 1.5. The other panels shows a detail near the onset of chaos, for $\mathbf{0 . 5 2} \leq \boldsymbol{r} \leq$ 0.70. As in all cases, the dashed red line indicates the instability threshold $\boldsymbol{L}_{\boldsymbol{i}}=\mathbf{0}$. Sensitive dependence on initial conditions, and chaos, occur for $\boldsymbol{L}_{\boldsymbol{i}}>\mathbf{0}$. Note that the two right panels in Figure 1.5 correspond to the same range in \boldsymbol{r}; these are two runs of exactly the same program, but the pictures differ; why? This is the question posed in the optional task, for the answer see $\S 1.2 .1$.

Justification of the \boldsymbol{x}-range: It is easy to see that, for $\mathbf{0} \leq \boldsymbol{x} \leq \mathbf{1}, \mathbf{0} \leq \boldsymbol{f}(\boldsymbol{x}) \leq \boldsymbol{r}$. Hence for $\mathbf{0} \leq \boldsymbol{r} \leq \mathbf{1}$ the unit interval is mapped onto itself.

1.2.1 Optional task

An (incorrect) "obvious" answer to why the two right panels in figure 1.5 are not the same is: this is because the program computing them ${ }^{2}$ starts each sequence with a random $\boldsymbol{x}_{\mathbf{0}}$. As we will see, there is some truth to this, but this cannot be the full answer - if it was, we would see the same phenomena with all the Liapunov exponent calculations, and we do not! The idea is that, even though we start with a random x_{0}, we compute the sequence

[^0]

Figure 1.5: Liapunov exponent $\left(\boldsymbol{L}_{\boldsymbol{i}}(\boldsymbol{r})\right)$ for the cusp075 map and details - see the text for description.
for many $\boldsymbol{x}_{\boldsymbol{n}}$, so it settles on the attractor; and only then we begin the calculation of the Liapunov exponent. The key point here is the phrasing "the attractor", for what if there is more than one attractor? In this case the sequence used to compute the Liapunov exponent would settle, randomly, on one of the possible attractors, giving rise to the behavior observed in figure 1.5. To check this hypothesis, we compute an orbit diagram for the cusp075 map, shown figure 1.6. The left panel shows the full orbit diagram, for $\mathbf{0} \leq \boldsymbol{r} \leq \mathbf{1}$, while the two right panels show a

Figure 1.6: Orbit diagram for the cusp075 map, $f(x)=r\left(1-|2 x-1|^{3 / 4}\right)$, and detail - see text for description.
detail for $\mathbf{0 . 5 0}<\boldsymbol{r}<\mathbf{0 . 7 5}$ (same detail). From this figure we can see that
a. There are two attractors. In blue: the fixed point $\boldsymbol{x}=\mathbf{0}$, stable for $0 \leq r<2 / 3$. In red: a chaotic attractor, which exists for $r_{c}<r \leq 1$, some $0<r_{c} \approx 0.54368897<2 / 3$.
b. The two attractors co-exist for $r_{c}<r<2 / 3$. A sequence starting at a random x_{0} may end up at one or the other. This is why the two right panels in figures 1.5 and 1.6 differ, even though they are for the same parameters.

To double check these conclusions, we recompute the two right panels in figure 1.5 (i.e.: Liapunov exponent for $\mathbf{0 . 5 2} \leq \boldsymbol{r} \leq \mathbf{0 . 7 0}$), but instead of starting the sequences from a random $\boldsymbol{x}_{\mathbf{0}}$, we start them from: (i) $\boldsymbol{x}_{\mathbf{0}}$ very close to $\mathbf{1} / \mathbf{2}$ - left panel in figure 1.7; and (ii) $\boldsymbol{x}_{\mathbf{0}}$ very small - right panel in figure 1.7. As expected, the "oscillations" that appear in figure 1.5 vanish. Furthermore, notice that
c. When $\boldsymbol{x}_{\mathbf{0}}$ is close to $\mathbf{1 / 2}$ (left panel in figure 1.7) the sequence is attracted to the fixed point at the origin for $\boldsymbol{r}<\boldsymbol{r}_{\boldsymbol{c}}$ (negative Liapunov exponent) and to the "red" attractor for $\boldsymbol{r}>\boldsymbol{r}_{\boldsymbol{c}}$ (positive Liapunov exponent).
b. When $\boldsymbol{x}_{\mathbf{0}}$ is small (right panel in figure 1.7) the sequence is attracted to the fixed point at the origin for $r<2 / \mathbf{3}$ (negative Liapunov exponent) and to the "red" attractor for $r>2 / 3$ (positive Liapunov exponent).
c. The red attractor is chaotic. This follow because it has a positive Liapunov exponent, so that it exhibits sensitivity to initial conditions, while being non-trivial.

Figure 1.7: Cusp075 map: Liapunov exponent $\boldsymbol{L}_{\boldsymbol{i}}(\boldsymbol{r})$. Details near the onset of chaos - see text for description.
b. Note that we observe neither period doubling, nor any periodic windows, for the cusp075 map. The Liapunov exponent for the red attractor behaves pretty smoothly for $\boldsymbol{r}>\boldsymbol{r}_{\boldsymbol{c}}$. The transition to chaos for the cusp075 map seems to be very different from the one that occurs for the Logistic map. The red attractor shows up, suddenly, "fully formed" and with $\boldsymbol{O}(\mathbf{1})$ size for $r>r_{c}$. Interestingly, this attractor does not seem to be fractal, and "fills in" a full interval ${ }^{3}$ in x for each value $r>r_{c}{ }^{\dagger}$, In particular: it should have box and correlation dimension $=1$.
\dagger I only have partial analysis and numerical evidence for this. I cannot prove it, and I have not found a reference where it is proved.

Figure 1.8: Orbit diagram for the cusp075 map, and detail - see text for description.
Finally we recompute the orbit diagram for the cusp075 map, for the same parameter ranges, $\mathbf{0}<\boldsymbol{r}<\mathbf{1}$ and $\mathbf{0 . 5}<$ $\boldsymbol{r}<\mathbf{0 . 7 5}$, as in figure 1.6. However, instead of a random initial $\boldsymbol{x}_{\mathbf{0}}$ for each \boldsymbol{r}, we do two computations: one starting near zero and another starting near $\mathbf{1 / 2}$. The result is shown in figure 1.8. Notice that the "gaps" in figure 1.6 are gone. The pictures illustrate how the red attractor pops up "out of nowhere" for $r \geq r_{c} \approx 0.54368897$.

[^1]
2 Newton's method in the complex plane $\# 01$

2.1 Statement: Newton's method in the complex plane $\# 01$

Suppose that you want to solve an equation, $g(x)=0$. Then you can use Newton's method, which is as follows: Assume that you have a "reasonable" guess, x_{0}, for the value of a root. Then the sequence $\boldsymbol{x}_{\boldsymbol{n + 1}}=\boldsymbol{f}\left(\boldsymbol{x}_{\boldsymbol{n}}\right), \boldsymbol{n} \geq \mathbf{0}$, where converges (very fast) to the root.

$$
\begin{equation*}
f(x)=x-\frac{g(x)}{g^{\prime}(x)} \tag{2.1}
\end{equation*}
$$

Remark 2.1 (The idea). Assume an approximate solution $g\left(x_{a}\right) \approx 0$. Then write $x_{b}=x_{a}+\delta x$ to improve it, where δx is small. Then $0=g\left(x_{a}+\delta x\right) \approx g\left(x_{a}\right)+g^{\prime}\left(x_{a}\right) \delta x \Rightarrow \delta x \approx-\frac{g\left(x_{a}\right)}{g^{\prime}\left(x_{a}\right)}$, and (2.1) follows.
Of course, if x_{0} is not close to a root, the method may not converge. Even if it converges, it may converge to a root that is far away from x_{0}, not necessarily the closest root. In this problem we investigate the behavior of Newton's method in the complex plane, for arbitrary starting points.

Consider iterations of the map generated by Newton's method for the roots of $\boldsymbol{z}^{\mathbf{3}}-\mathbf{1}=\mathbf{0}$. i.e.:
where $\mathbf{0}<\left|z_{0}\right|<\infty$ is arbitrary, and the $\boldsymbol{z}_{\boldsymbol{n}}$ are

$$
\begin{equation*}
z_{n+1}=f\left(z_{n}\right)=\left(\frac{2}{3}+\frac{1}{3 z_{n}^{3}}\right) z_{n}, \quad n \geq 0 \tag{2.2}
\end{equation*}
$$

complex numbers.
Note that

$$
\begin{equation*}
\zeta_{1}=1, \quad \zeta_{2}=e^{i 2 \pi / 3}=\frac{1}{2}(-1+i \sqrt{3}), \quad \text { and } \quad \zeta_{3}=e^{i 4 \pi / 3}=\frac{1}{2}(-1-i \sqrt{3}) \tag{2.3}
\end{equation*}
$$

are the roots
of $z^{3}=1$.
Your tasks: Write a computer program to calculate the orbits $\left\{z_{n}\right\}_{n=0}^{\infty}$. Then, for every initial point $\boldsymbol{z}_{\mathbf{0}}$, draw a colored dot at the position of $\boldsymbol{z}_{\mathbf{0}}$, where the colors are picked as follows:

$$
\begin{equation*}
z_{n} \rightarrow \zeta_{1}, \text { green. } \quad z_{n} \rightarrow \zeta_{2}, \text { red. } \quad z_{n} \rightarrow \zeta_{3}, \text { blue. } \quad \text { No convergence, black. } \tag{2.4}
\end{equation*}
$$

What do you see? Do blow ups of the limit regions between zones.
Hints and practical numerical considerations.
h1. Divide the region where the initial data $\boldsymbol{z}_{\mathbf{0}}$ will be picked [I suggest the square $\mathbf{- 2} \leq \operatorname{Re}\left(\boldsymbol{z}_{\mathbf{0}}\right), \operatorname{Im}\left(\boldsymbol{z}_{\mathbf{0}}\right) \leq \mathbf{2}$] into pixels, then pick a \boldsymbol{z}_{0} at the center of each pixel, and color the pixel according to (2.4).
h2. If you use MatLab, do not plot points. As suggested in item $\mathbf{h 1}$ plot pixels - use the command image (x, y, C) to plot, where $\boldsymbol{x}=\operatorname{Re}\left(\boldsymbol{z}_{0}\right)$ and $\boldsymbol{y}=\operatorname{Im}\left(\boldsymbol{z}_{0}\right)$. Why? Because using points leaves a lot of unpainted space in the figure, and gives huge file sizes if you use enough pixels to get a good picture.
h3. Deciding convergence. Deciding that the sequence converges is easy: once $\boldsymbol{z}_{\boldsymbol{n}}$ gets "close enough" to one of the roots, then the very design of Newton's method guarantees convergence. Thus, given a $\boldsymbol{z}_{\mathbf{0}}$, compute $\boldsymbol{z}_{\boldsymbol{N}}$ for some large \boldsymbol{N}, and check if $\left|\boldsymbol{z}_{\boldsymbol{N}}-\boldsymbol{\zeta}_{\boldsymbol{j}}\right|<\boldsymbol{\delta}$ for one of the roots and some "small" tolerance $\boldsymbol{\delta}$ - which does not have to be very small, in fact $\boldsymbol{\delta}=\mathbf{0 . 2 5}$ is good enough. If this criteria is not satisfied for any of the roots, then classify the sequence starting at \boldsymbol{z}_{0} as "non-convergent".

You can get reasonable pictures with $N=50$ iterations on a $\mathbf{1 5 0} \times \mathbf{1 5 0}$ grid - a larger N is needed when refining near the boundary between zones. For the answer I used a $\mathbf{5 0 0} \times \mathbf{5 0 0}$ grid and $N=\mathbf{1 0 0}$ iterations - which I increased to $N=200$ and $N=300$ for the blow ups of details.
h4. Compute in parallel. If you use MatLab, make sure to do all the sequences (one for each pixel) in parallel, using vector/matrix operations. This is much faster than a "for loop".
h5. Avoid division by zero. Note that (2.2) ceases to make sense if $\boldsymbol{z}_{\boldsymbol{n}}=\mathbf{0}$ - classify this as non-convergence. This can cause a problem if you are computing all the sequences in parallel, because this requires all of them to be computed from $\boldsymbol{z}_{\mathbf{0}}$ to $\boldsymbol{z}_{\boldsymbol{N}}$. One way to get around this (in MatLab) is as follows: Place all the iterates in a complex matrix $\mathbf{Z n}$, where the entry $(\boldsymbol{p}, \boldsymbol{q})$ corresponds to $\boldsymbol{z}_{\boldsymbol{n}}$ for the sequence starting in the $(\boldsymbol{p}, \boldsymbol{q})$ pixel. Then, before computing the next iterate, execute: $\mathbf{Z n}=\mathbf{Z n}+\mathbf{d e l}^{*}(\mathbf{Z n}=\mathbf{=} \mathbf{0})$, where $\mathbf{d e l}=\mathbf{1 e} \mathbf{- 3 0} .^{\dagger}$ After
this sequences with $\boldsymbol{z}_{\boldsymbol{n}}=\mathbf{0}$ will produce a very large $\boldsymbol{z}_{\boldsymbol{n}+\boldsymbol{1}}$, which is guaranteed not return to the vicinity of the roots $\boldsymbol{\zeta}_{\boldsymbol{j}}$ for many iterations (more than 300), resulting in "effective" non-convergence. ${ }^{\ddagger}$
\dagger This replaces zero entries in $\mathbf{Z n}$ by del, because the logical operator $(\mathbf{Z n}=\mathbf{0})$ yields zero for all non-zero entries in $\mathbf{Z n}$, and one for zero entries.
\ddagger The result will be $\boldsymbol{z}_{n+1} \approx(\mathbf{1} / \mathbf{3}) \mathbf{1 0}^{\mathbf{6 0}}$, while for \boldsymbol{z}_{n} large (2.2) reduces to $\boldsymbol{z}_{n+1} \approx(\mathbf{2} / \mathbf{3}) \boldsymbol{z}_{n}$. Hence returning to $z_{n+M}=O(1)$ requires, roughly, $(2 / 3)^{M} 10^{60}=O(1)$.

2.2 Answer: Newton's method in the complex plane \#01

Figure 2.1 show the results of our calculations. Note the fractal nature of the boundary between the basins of attraction

Figure 2.1: (Newton's method in the complex plane \#01). Convergence zones for the $z^{3}=1$ Newton's map iterates, using the color scheme in (2.4), with a 500×500 pixel grid. Left to right and top to bottom: (a) $N=100$ iterations, for $-2<x, y<2$. The crosses are the roots ζ_{j}. (b) $N=200$ iterations, for $0.2<x<0.6$ and $0.4<y<0.8$. (c) $\boldsymbol{N}=\mathbf{3 0 0}$ iterations, for $0.35<x<0.45$ and $0.4<y<0.5$. (d) $\boldsymbol{N}=\mathbf{3 0 0}$ iterations, for $0.39<x<0.42$ and $0.44<y<0.47$. In $(\mathrm{a}-\mathrm{c})$ the square with a yellow boundary indicates the region displayed in the next picture.
for each root: as we zoom in, the object appears as a smaller (but distorted) copy of itself. Non-trivial self-similarity ${ }^{4}$

[^2]is the hallmark of a fractal. Sets like this (boundaries between convergence regions of complex analytic iterations) are called Julia sets.

The attracting basins are Fatou sets. The sets are named after Gaston Julia and Pierre Fatou, two mathematicians that pioneered the study of complex dynamics - e.g., see: G. Julia, Mémoire sur l'iteration des fonctions rationnelles, Journal de Mathématiques Pures et Appliquées, 8: 47-245, 1918, and P. Fatou, Sur les substitutions rationnelles, Comptes Rendus de l'Académie des Sciences de Paris, 164: 806-808 and vol. 165, pp. 992-995, (1917).

The orbits within the Julia set are chaotic. These orbits are, generally, not periodic (but recurrent), and small differences in z_{n} grow exponentially with n (sensitive dependence on initial conditions). However, computing these orbits is extremely hard, as perturbations out of the Julia set make the resulting orbit convergent.

THE END.

[^0]: ${ }^{2}$ See sample/sketch MatLab script in the problem statement.

[^1]: ${ }^{3}$ Except for, at most, a discrete set of points.

[^2]: ${ }^{4} \mathrm{~A}$ line in the plane is also self-similar, but it has trivial structure.

