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1 Volume evolution

1.1 Statement: Volume evolution

Consider some arbitrary orbit, Γ, for the system

d~r

dt
= ~F (~r), where ~r and ~F are vectors in Rn, (1.1)

and ~F has continuous partial derivatives up to (at least) second order. That is: Γ is the curve in Rn given by some

solution ~r = ~rγ(t) to (1.1). Then

A. Let Ω = Ω(t) be an “infinitesimal” region that is being advected, along Γ, by the flow given by (1.1). For

example:

A1. Let Ω(0) be a ball of “infinitesimal” radius dr, centered at ~rγ(0).

A2. For every point ~r 0
p ∈ Ω(0), let ~r = ~rp(t) be the solution to (1.1) defined by the initial data ~rp(0) = ~r 0

p .

A3. At any time t∗, the set Ω(t∗) is given by all the points ~rp(t∗), where ~r 0
p runs over all the points in Ω(0).

Note that Ω(0) need not be a ball. Any infinitesimal region containing ~rγ(0) will do. All we need is that the

notion of hypervolume applies to it — see item B. In particular: you do not need to use/know the formula for

the hypervolume of a ball in n dimensions to do this problem!

B. Let A = A(t) be the hypervolume of Ω(t). Note: (i) if n = 1 the hypervolume is the length; (ii) if n = 2

the hypervolume is the area; (iii) if n = 3 the hypervolume is the volume; etc.

TASK: Find a differential equation for the time evolution of A.
Optional: use the differential equation to show that det(eB t) = etr(B) t for any square matrix B — where
tr(B) denotes the trace of B. Note: what you are asked to do here is to do the proof using the differential equation,

specifically, not by some other techniqe, like (say) linear algebra.

Hints.

h1. Introduce the vector δ~rp = δ~rp(t) = ~rp − ~rγ for every point in Ω(t). This vector characterizes the evolution

of the “shape” of Ω as the set moves along Γ. In order to calculate how A(t) evolves, you only need to know

how the δ~rp vectors evolve.

h2. For every vector δ~rp, write an equation giving δ~rp(t+ dt) in terms of δ~rp(t) and the partial derivatives of
~F along Γ. Since you are dealing with infinitesimal terms, you can neglect higher order terms, so as to

obtain a relationship from δ~rp(t) to δ~rp(t+ dt) given by a linear transformation. Make sure that this linear

transformation correctly includes the O(dt) terms, which you will need to calculate time derivatives.

h3. From the transformation in item h2 derive a relationship between A(t+ dt) and A(t). Note that:

(a) For linear transformations, hypervolumes are related by the absolute value of the determinant. †

(b) You need to calculate the determinant only up to O(dt) terms (neglect higher orders).

(c) For any square matrix M , det(1 + εM) = 1 + ε tr(M) + O(ε2).

Optional: prove the formula in (c).

h4. Item h3 will yield a formula of the form A(t+ dt) = A(t) + (something) dt. What differential equation is this?

† Multi-variable calculus: For a transformation ~x → ~y;
∫
f(~y) d~y =

∫
f(~y(~x))| det(J)| d~x, where J = matrix of partial

derivatives ∂ym
∂xn

. Thus for an infinitesimal hypervolume δV → |det J | δV . If ~y = M ~x (linear transformation), J = M .

1.2 Answer: Volume evolution

At any time t, we can write
~rγ(t+ dt) = ~rγ(t) + ~Fγ(t) dt, (1.2)

~rp(t+ dt) = ~rp(t) + ~Fp(t) dt, (1.3)



18.353 MIT, (Rosales) Neglect terms in equations. 3

where we have neglected O
(
(dt)2

)
contributions, ~Fγ = F (~rγ), ~Fp = F (~rp), and ~rp = ~rp(t) tracks an arbitrary point

in Ω(t) — as in item A2. Hence we can write

δ~rp (t+ dt) = δ~rp (t) +
(
~Fp(t)− ~Fγ(t)

)
dt

=
(
I +Mγ(t) dt

)
δ~rp (t), (1.4)

where: (a) δ~rp = ~rp − ~rγ , (b) I is the identity matrix, (c) M = {∂Fi/∂xj} is the matrix of partial derivatives of ~F ,

(d) Mγ = M(~rγ), and (d) we have neglected O
(
(dr)2 dt

)
terms to arrive at the second line in (1.4). Therefore

A(t+ dt) = det

(
I +Mγ(t) dt

)
A(t) =

(
1 + tr

(
Mγ(t)

)
dt

)
A(t), (1.5)

where we have neglected O
(
(dt)2

)
terms when computing the determinant. 1 From this last equation we obtain

d

dt
A = div

(
~F
)
A, (1.6)

since tr
(
Mγ(t)

)
= div

(
~F
)

, with the divergence evaluated along Γ.

The optional tasks

Consider the equation
d~r

dt
= B~r, for which (1.6) yields A = etr(B) t [#1]. On the other hand ~rp(t) = eB t ~r 0

p , so

that A(t) =
∣∣det

(
eB t

)∣∣. But det
(
eB t

)
is never zero and starts at one, hence det

(
eB t

)
> 0 and the absolute value

is not needed. Thus A(t) = det
(
eB t

)
[#2].

From [#1] and [#2], det(eB t) = etr(B) t.

For the second optional task, consider first the case where all the eigenvalues of M , {λn}, are distinct, with

M ~vn = λn ~vn the eigenvectors. It is then easy to see that the eigenvalues of 1 + εM are {1 + ε λn}.
Hence: det(1 + εM) =

∏
(1 + ε λn) = 1 + ε

∑
λn + O(ε2) = 1 + tr(M) + O(ε2).

The case of repeated eigenvalues follows by adding a small perturbation to M , which splits the eigenvalues, and then

taking the limit.

Note: there are many other ways to prove this. For example:

(a) You could expand the determinant using the first row, and then noticing that this yields det(1 + εM) =

(1 + εm11) det(1 + M11) + O(ε2), ‡ where mij are the entries of M , and M11 is the matrix that results from

eliminating the first row and column of M . Then use induction.

‡ The tricky part here is showing that the O(ε2) is really O(ε2).

(b) You could use that, for any square matrix, det(A) =
∑

sign(σs) Πs, where the sum is over all the products

Πs =
∏
i ai σs(i), where σs is a reordering of 1, 2, . . . , n. Then notice that, for A = 1 + εM , the only σs for

which Πs is not O(ε2) (or higher) is the identity.

(c) You could use that ln det(1 + εM) = tr(ln(1 + εM)) = tr(εM − 1
2
ε2M2 + . . . ).

2 Neglect terms in equations (inertia in a forced-damped oscillator)

2.1 Statement: Neglect terms in equations

When modeling physical systems it is useful to be able to estimate how important the various physical effects that

bear on the problem are, so that only the physics that matters is included in the model. The “kitchen sink” approach

leads to models with too many unknown “free” parameters, and complicated system of equations that are very hard

1 No absolute value is needed because I +Mγ(t) dt is infinitesimally close to the identity, so its determinant is positive = 1 +O(dt).
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to solve (even with a computer). Not to mention the fact that “numerically” solving a system of equations whose

behavior you do not understand can easily lead to trouble.

There is no such thing as fool-proof software that can reliably solve problems the user

does not understand. This is particularly true for problems that involve solving pde.

Dimensional analysis is a tool that can help to identify effects that (maybe) can be neglected. I say “maybe” because

the fact that some effect appears to be small does not mean that it can be neglected — for example: boundary layers

and shocks are related to physical terms that a naive analysis classifies as “small”. But a necessary condition to be

able to neglect an effect is that it be small. Beyond this, hard thinking is needed. There is no magic bullet.

Here we will consider a very simple example, basically: a toy model for a shock absorber. Thus, imagine a mass m,

attached both to a spring (with spring constant k > 0) and a damper (with damping constant ν > 0). We assume

that the damper produces a force opposing the motion and proportional to the velocity. We also assume motion in

1-D, and a Hook law spring. In addition, we will assume that an external, time varying force, is acting on the mass.

Let x be the deviation of the mass from its equilibrium position (where the spring force vanishes). Then Newton’s

laws of motion involve four terms: (1) inertia, mẍ, (2) spring force, −k x, and (3) damping force, −ν ẋ. (4) applied

force, f = f(t). Now answer/perform the following questions/tasks:

q1. What dimensions do k and ν have?

q2. The balance between damping and the spring force produces a characteristic time scale, τd. Write a formula

for τd — without solving any equations.

Assume that the external force has the form f = f0 F (t/τd), where f0 is a typical force, and F is an a-

dimensional function, with both the function and derivatives of size O(1).

q3. The balance between inertia and the spring also produces a characteristic time scale, τs. Write a formula for

τs — without solving any equations.

q4. The balance between the spring force and the applied force produces a characteristic length scale, L. Write a

formula for L — without solving any equations.

q5. Write the equation for the mass spring system using a-dimensional variables. Specifically: write the equation

in terms of the variables x̃ = x/L and t̃ = t/τd. The equation can be written so that it involves a single

a-dimensional number, ε, multiplying the second derivative. Write ε in terms of τd and τs.

Now answer the questions: What condition on ε is needed to be able to neglect the effects of inertia (i.e.:

the term mẍ in the equations) on the behavior? What does the condition mean in terms of the times τd and

τs? Can you interpret the condition in terms of something being at, or almost, at equilibrium? Why is this a

regime at which you would like a car shock-absorber to operate at?

q6. Note that τs is related to the period of oscillation, T = α τs, via some numerical constant α. Find α — you

need to solve an equation to find α.

2.2 Answer: Neglect terms in equations

q1. The three terms mẍ, ν ẋ, and k x are all forces, and must have the same dimensions. Hence

dimension(k) =
(mass)

(time)
2 and dimension(ν) =

(mass)

(time)
.

q2. A balance between damping and the spring involves ν and k only. Hence τd = ν/k.

q3. A balance between inertia and the spring involves m and k only. Hence τs =
√
m/k.

q4. A balance between the applied force and the spring involves f0 and k only. Hence L = f0/k.

q5. In terms of the variables x̃ and t̃, the equation mẍ+ ν ẋ+ k x = f takes the form

ε ¨̃x+ ˙̃x+ x̃ = F (t̃), where ε =
τ2
s

τ2
d

. (2.1)
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From this we see that in order to be able to neglect the effects of inertia, ε� 1 is needed. This means that

τs � τd, so that (over time scales of size τd) the inertial effects have time to reach equilibrium — with the time

evolution of the system then being controlled by the damping.

If this were a car shock-absorber, what this behavior means is that the car height changes on the (relatively)

slow time scale τd, and avoids the rattling that the car springs alone would cause. If you were actually designing

a car, † you would start from the applied force that you expect, and estimate its time scale τf (this depends

on the car velocity and road type), as well as its strength. Then you would select the damper parameters ‡ k
and ν so that τd ≈ τf , τs � τd, and so that L is kept reasonably small — from the formulas in item q2–q4 it

should be clear that this is possible. Unfortunately, the resulting shock-absorber would be pretty minimal —

then again, actual shock absorbers are more complicated than this, and incorporate other parameters that can

be adjusted.

† Bear in mind that this is an extremely simplified form of the real problem!

‡ The car mass m is not a parameter that you can choose here.

q6. The relevant equation is mẍ+ k x = 0, whose solutions are x = a cos

(
t

τs
+ θ0

)
, where a and θ0 are constants.

It follows that T = 2π τs — i.e.: α = 2π.

3 Dipole system
3.1 Statement: Dipole system

Task #1. Plot a computer generated phase plane portrait for the “Dipole system”

ẋ = 2x y and ẏ = y2 − x2. (3.1)

I strongly suggest that you use the PHPLdemoB MatLab script provided to you in the class website [MatLab toolkit].

Task #2. Find the critical points for this system, and linearize near them. What do the linearized equations tell

you about the behavior near the critical points?

Task #3. Use the generated phase plane portrait to compute the index of the critical points.

Task #4. The generated phase plane portrait should suggest that the orbits for this system are circles. † In fact any

circle tangent to the y-axis at the origin would seem to be an orbit. Show that this is correct.
† In MatLab, use “axis square” when plotting, so there are no distortions.

Hint for #3. Write a function E whose level curves are all the circles tangent to the y-axis at the origin, and show that E is

conserved. You will not be able to obtain a function E without some singularity on the y-axis. ‡ The best you can do is have E

singular at the origin only. This is related to the fact that the y-axis is the circle tangent to the y-axis at the origin, whose radius is

infinity; while the origin itself corresponds to a zero radius.
‡ This is not a problem, since the y-axis can be easily analyzed separately.

3.2 Answer: Dipole system

Task #1. Figure 3.1 shows a computed generated phase plane portrait. Because (3.1) is invariant under x 7→ ax,

y 7→ a y, and t 7→ t/a (a > 0 any constant), the phase plane portrait is invariant under stretching. Once we

know what happens in a neighborhood of the origin, we know what happens everywhere.

Task #2. The system has only one critical point, the origin. The linearized equations there are ~̇x = 0, which tells

nothing about the behavior of the system near the critical point.

Task #3. The index of the origin in the figure is I = 2. As we go around the origin counterclockwise, starting on

the positive real axis, in each quarter turn of the path the flow vector rotates (also counterclockwise) a half turn.

Task #4. The radius |r| circle, † tangent to the y-axis at the critical point, is given by (x− r)2 +y2 = r2. Solving
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Figure 3.1: Phase plane portrait for the Dipole system.

for r yields

r =
x2 + y2

2x
, or

1

r
=

2x

x2 + y2
. (3.2)

To show that these are conserved quantities, ‡ we use (3.1) to obtain: ρ̇ = 2 y ρ, where ρ = x2 + y2. Hence

ṙ =
ρ̇

2x
−
ρ ẋ

2x2
= 0. (3.3)

This proves that both E1 = r and E2 = 1/r are conserved quantities. Hence the circles (with the origin missing)
r = constant, −∞ < r 6= 0 < ∞, are orbits — these circles are contained within either x > 0 or x < 0. The

y-axis requires a separate argument, which is trivial because there the equations reduce to ẏ = y2.

† Here r > 0 corresponds to a circle to the right of the y-axis, while r < 0 is a circle to the left.

‡ Note that E1 = r is singular along the whole y-axis, while E2 = 1/r is singular at the origin only.

Task #4 (alternative). Seek for solutions of the form x = r (1 + cosφ) and y = r sinφ, (3.4)

where r is a constant and φ = φ(t) — i.e.: circles of

radius |r|, centered at (x, y) = (r, 0). Then φ̇ = −2 r (1 + cosφ), (3.5)

which has a semi-stable critical point at φ = ±π. Clearly:

(3.4–3.5) yield the phase portrait in figure 3.1, except for the y-axis, which requires a separate argument.

Remark (on global attractors that are not Liapunov stable). Figure 3.1 shows that there is exactly one orbit that

never returns to the critical point (the positive y-axis). Were it not for this orbit, this critical point would be an

example of a global attractor that is not Liapunov stable. However, it is easy to construct an example of a global

attractor that is not Liapunov stable by “projecting” the phase portrait in figure 3.1 onto a sphere, as follows:

1. Pick a point on the sphere and call it “the origin” (this will be the critical point).

2. Draw a straight line tangent to the sphere at the critical point, and select a direction along the line.

3. Let the orbits be the intersections of the sphere with any plane that contains the line selected in item 2.

4. Let the flow direction along any of the orbits in item 3 be the same as that selected for the line in item 2.

This second system is an example of a global attractor that is not Liapunov stable. In this picture the y-axis gets

mapped into a geodesic circle going through the origin and its antipode. ♣
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4 Phase Plane Center Question #01

4.1 Statement: Phase Plane Center Question #01

Consider the equation ẍ+ (1− cos (ẋ)) + x = 0. (4.1)

This equation has a critical point at x = ẋ = 0, which is a center for

linearized analysis (show this). Is it a center for the full nonlinear equation as well? Justify your answer with an

analytical argument. Finally: plot a computer generated phase plane portrait for the system (use the PHPLdemoB

MatLab script provided with the MatLab toolkit in the course web page). Examine the phase plane in a reasonably

large region enclosing the critical point; specifically: −4 < x < 1 and −2.5 < ẋ < 2.5. What do you see? Can

you guess what the complete phase plane looks like from this picture? How can you check if your guess is correct?

4.2 Answer: Phase Plane Center Question #01

The linearization for equation (4.1) near the critical point x = ẋ = 0 is ẍ+ x = 0. (4.2)

This is the harmonic oscillator equation, thus the critical point is a

center in the linearized analysis. In addition, equation (4.1) is

invariant under the change t→ −t; i.e.: (4.1) is a reversible
system. It follows that x = ẋ = 0 is a center for the non-
linear problem as well.
The picture on the right shows a computed generated phase

plane portrait for −4 < x < 1 (horizontal axis) and

−2.5 < ẋ < 2.5 (vertical axis). Note that, while near the

center the orbits become nearly circular, far away they become

more and more elongated. In fact, the periodic orbits seem to

be restricted to be within a vaguely paraboloidal region. How-

ever, this is not true, as the phase plane picture below, on a

much larger region, shows. This illustrates how easy is to draw

the wrong conclusion from limited information.
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 d2x/dt2 + 4*(1 cos(dx/dt)) + x = 0

 x

 d
x/
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The picture on the right indicated that all the orbits for equa-

tion (4.1) are closed curves, with the very large orbits transi-

tioning back to circles — this last is not surprising, since when

ẍ and x are large they dominate over the (1− cos(ẋ)) term,

which is constrained to be between 0 and 2.

Can we prove that all the orbits are closed? Yes: Introduce

polar coordinates x = r cos θ and ẋ = r sin θ. Then θ̇ =
1
r2

(xẍ − ẋ2) = − 1
r2

(x2 + ẋ2 + (1 − cos ẋ)) < 0. Thus

an orbit that crosses the x-axis at some x1 < 0, will cross it

again at some x2 > 0, and then again at some x3 < 0. But

the system is reversible, so it must be x1 = x3. QED
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5 Reversible system #01 (show reversible and sketch phase portrait)

5.1 Statement: Reversible system #01

Show that the system ẍ+ x ẋ+ x = 0 is reversible and sketch the phase portrait. You can use a computer to do

the picture, but you must justify the plot; in particular: include an analysis of any fixed point that occurs.

5.2 Answer: Reversible system #01

Start by writing the system in the 2-D form ẋ = v and v̇ = −x− x v.

It should be clear that this is invariant under x 7→ −x, v 7→ v, t 7→ −t.
Hence the system is reversible (relative to the v-axis).
There is only one fixed point, at (0, 0), and the linearization

ẋ = v, v̇ = −x shows that it is a linear center. Because the system is reversible, it is also a nonlinear center.
There are three nullclines:

1. x = 0, where v̇ = 0. The orbits cross this nullcline left to right for v > 0, and right to left for v < 0.

2. v = 0, where ẋ = 0. The orbits cross this nullcline going down for x > 0, and going up for x < 0.

3. v = −1, where v̇ = 0. This nullcline is also a trajectory; along it ẋ = −1.

Looking at the direction field, it is easy to see that the trajectories swirl around the critical point above v = −1.

Further, because of the reversibility, they actually close (instead of spiral in or out). Similarly, below v = −1, the

trajectories diverge to infinity. From this the phase portrait is shown in Fig. 5.1 follows.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
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1.5
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0.5
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y

Figure 5.1: Phase portrait for the “reversible
system #01”. Because of reversibility, the
phase portrait is symmetric about the v-axis

6 A system both gradient and Hamiltonian

6.1 Statement: A system both gradient and Hamiltonian

Consider the system ẋ = cosx cosh y = f and ẏ = sinx sinh y = g.

a. Then fy = gx, hence this is a gradient system. 2 Find the potential V = V (x, y).

b. Show that the system is also Hamiltonian, and find the Hamiltonian H = H(x, y).

2 Why? Can you show this?
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6.2 Answer: A system both gradient and Hamiltonian

a. We have fy = cosx sinh y = gx. We can write f = −Vx and g = −Vx, where V = − sinx cosh y.

A necessary condition for a gradient system is fy = −(Vx)y = −(Vy)x = gx. It is sufficient on simply connected sets.

b. Since fx = − sinx cosh y = −gy, the system is Hamiltonian (why? ), and we can write f = −Hy and g = Hx,

where H = − cosx sinh y.

c. Finally, note that we can write the system in the complex form ż = cos z̄, where z = x + iy and z̄ = x − iy.

This follows from the trigonometric identity cos(x− i y) = cosx cosh y + i sinx sinh y.

Further “fun” facts.

f1. A Hamiltonian system has centers and saddles only, while a gradient system can have sinks and sources. How

can a system be both gradient and Hamiltonian? Answer: by having saddles only; which are also allowed by

gradient systems.

In this case, at a critical point: cosx = 0 (since cosh never vanishes), hence sinx = ±1. Thus y = 0, hence

cosh y = 1 and sinh y = 0. You can then check that the critical point is a saddle, with eigenvalues λ = ±1.

f2. Let ẋ = −Hy = −Vx and ẏ = Hx = −Vy be a system that is both Hamiltonian and Lagrangian. Then

you can check that both H and V satisfy the Laplace equation ∆H = ∆V = 0.

Viceversa, suppose that H satisfies the Laplace equation. Then you can construct a V such that Vx = Hy

and Vy = −Hx. That is: ẋ = −Hy and ẏ = Hx is both gradient and Hamiltonian, with saddles only.

Proof. For any ~r = (x, y), consider a curve Γ from the origin ~0 to ~r, and define V (~r) =
∫
Γ
(Hy dx −Hx dy). From

Green’s theorem the answer does not depend on Γ, so V is well defined. Obviously Vx = Hy and Vy = −Hx is satisfied.

f3. Harmonic functions min-max theorem: if ∆H = 0, then H has no isolated local maximums (nor minimums).

Proof. Such maximums or minimums would be centers for the Hamiltonian system ẋ = −Hy and ẏ = Hx. Now use f1–f2.

Note: this is a “weak” form of the min-max theorem. The full theorem applies in any dimension, and does

not requiere “isolated”. It also applies on “generic” regions, where it says that the min-max of an harmonic

function has to be on the boundary. However, it is interesting that a Dynamical Systems proof of the theorem

is possible, even if limited in scope.

7 Two closed orbits enclosed by a third

7.1 Statement: Two closed orbits enclosed by a third

Consider a phase plane system, ẋ = f(x, y) and ẏ = g(x, y), where f and g are nice and smooth. Imagine that

the system has two disjoint closed orbits (say: Γ1 and Γ2), and a third one (say: Γ3) that encloses both. † What is
the minimal number of critical points that the system can have, and what are their indexes?
† Example: Γ1 = radius 1 circle centered at (2, 0), Γ2 = radius 1 circle centered at (−2, 0), Γ3 = radius 4 circle centered at (0, 0).

7.2 Two closed orbits enclosed by a third

Since Γ1 and Γ2 each has index 1, each must enclose at least one critical point with index 1. Then, because Γ3

also has index 1, a third critical point (outside Γ1 and Γ2, but inside Γ3) is needed, with index -1. Thus the

answer is: minimum needed is three critical points, with indexes I1 = 1, I2 = 1, and I3 = −1. The equation

ẍ+ V ′(x) = 0, with V = −1
2
x2 + 1

4
x4, provides an example — with many possible choices for the Γj .
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8 Find a conserved quantity #01 (and sketch phase portrait)

8.1 Statement: Find a conserved quantity #01 (and sketch phase portrait)

Find a conserved quantity for the system ẍ = a − ex, and sketch phase portraits characteristic of the cases

a < 0, a = 0, a > 0. Include an analysis of any fixed point that occurs.

8.2 Answer: Find a conserved quantity #01 (and sketch phase portrait)

Write the equation in the form ẍ = −dV/dx with V (x) = −ax+ ex.

Then, multiply by ẋ and note that the result is
d

dt

(
1

2
ẋ2 + V (x)

)
= 0.

Thus, a conserved quantity is E(x, ẋ) =
1

2
ẋ2 + V (x).

In 2-D form, the system is . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ẋ = v v̇ = a− ex,

with a fixed point at v = 0 and x = ln a — only for a > 0;

there is no fixed point if a ≤ 0.
For a > 0, expand the conserved quantity around the fixed

point by setting x = log a+ u (u small). This yields 2E(u, v) ≈ a (1− log a) + v2 +
a

2
u2,

which shows that the conserved quantity has a local
minimum at the fixed point. Therefore the fixed point is a nonlinear center.

For a ≤ 0, v̇ < 0 everywhere. Hence eventually ẋ < 0 along any trajectory. It follows that all the trajectories

diverge to (−∞, −∞) as t → ∞. Further: for |v| large (at a fixed x) the trajectories become parallel to the

x-axis.

The phase portraits are shown in Fig. 8.1. Note that this system is reversible (it is invariant under the transformation

x 7→ x, v 7→ −v, t 7→ −t); hence the phase portraits are symmetric relative to the x-axis.

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

a < 0(a)

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

a = 0(b)

1.0 0.5 0.0 0.5 1.0
x

1.0

0.5

0.0

0.5

1.0

y

a > 0(c)

Figure 8.1: Phase portraits for “Find a conserved quantity #01 (and sketch phase portrait)”.

THE END.


