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1 Blow up in finite time #01

1.1 Statement: Blow up in finite time #01

Consider the evolution of x(t) according to ẋ = rx+ x3, where r > 0 is fixed.

a. Show that the origin is an unstable fixed point.

b. For x(0) = x0 6= 0, show that |x(t)| → ∞ as t→ t0, where

t0 =
1

2r
log

(
1 +

r

x20

)
.

1.2 Answer: Blow up in finite time #01

a. Define f(x) = r x+ x3 and note that f ′(x) = r+ 3x2. Hence f ′(0) = r > 0⇒ the origin is unstable according
to linear stability analysis.

b. By partial fractions, we obtain (
1

x
− x

x2 + r

)
dx

dt
= r.

Integrating with respect to t and applying the initial condition yields the following implicit solution for x(t):

log

(
|x|√
x2 + r

)
= r t+ log

(
|x0|√
x20 + r

)
.

Exponentiating and then squaring both sides sides gives (after some rearrangement)

[x(t)]2 =
r x20 e

2 r t

x20 (1− e2 r t) + r
.

Blow-up occurs at the time t = t0 at which the denominator vanishes, namely

x20 (e2 r t0 − 1) = r =⇒ t0 =
1

2 r
log

(
1 +

r

x20

)
.

2 Leaky Bucket by dimensional analysis

2.1 Statement: Leaky Bucket by dimensional analysis

Consider a cylindrical bucket of cross-sectional area A, with a small hole at the bottom (of cross-sectional area
a� A), filled with water up to a depth h = h(t) (h is a function of time because the bucket is leaking water). The
objective is to write an equation for h, ḣ = f(h), under the following assumptions:

1. The leaking is very slow, so that we can neglect any fluid motion within the bucket.

2. The small hole at the bottom is large enough that it is safe to neglect surface tension — thus the leaking occurs
though a small continuous stream (jet) out of the hole, rather than a “drip-drip” involving drops.

3. We now argue that the speed at which the bucket empties (i.e.: ḣ) depends on
A and a through their quotient a/A only, and it is proportional to it. That is ḣ = (a/A)F (h), (2.1)
where F depends on neither a nor A.
Argument: for a given water flux through the small hole, it is clear that ḣ is proportional to 1/A. On the other hand, the

flux through the small hole is proportional to the pressure difference across the hole, times a — where the pressure difference

depends on h, g, etc., but not A. A somewhat simpler argument is: n equal buckets will empty at the same rate; but this is

the same as multiplying both A and a by n (this works for integers only, though).
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Given the assumptions above, F in (2.1) should depend only on the following dimensional quantities: g (the
acceleration of gravity), ρ (water density), and (of course) h.
Task: use dimensional analysis to determine F up to a multiplicative constant. 1 A bit of extra thinking will also tell
you what is the sign of F .

2.2 Answer: Leaky Bucket by dimensional analysis

The density ρ involves mass, while neither of ḣ, h, or g, does. Hence F does
not depend on ρ; it can only depend on g and h. It then follows that ḣ = −γ (a/A)

√
g h, (2.2)

where γ > 0 is some numerical constant (turns out γ =
√

2).

Note #1. The sign in (2.2) follows because h has to decrease.

Note #2. Doing a derivation of the equations using a bit of hydrodynamics, it can be shown that γ =
√

2.

Note #3. It is a bit counter-intuitive that the equation does not involve ρ. For a heavier (lighter) fluid the pressure
at the bottom should be larger (smaller). Should this not produce a larger (smaller) outflow? Actually, no, because
the mass per unit time of the outgoing fluid will also be larger (smaller), requiring more (less) energy to be pushed
out — and the two effects balance each other. It is, basically, the same reason heavy objects do not fall faster than
light ones (in vacuum).

3 Get equation from phase line portrait problem #07

3.1 Statement: Get equation from phase line portrait problem #07

Consider the ode on the line
dx

dt
= f(x), (3.1)

where f is some function which has a continuous derivative. Assume that (3.1) has at least two critical points, and
let x1 < x2 be two consecutive critical points (there is no other critical point between them). Assume now that both
x1 and x2 are stable. Is this possible? Does a function f = f(x) yielding this exist?
If the answer is no, prove it.
If the answer is yes, prove it by giving an example.

3.2 Answer: Get equation from phase line portrait problem #07

The answer is no. Because f is continuous, it must either be: f(x) > 0 for x1 < x < x2 (in which case x1 cannot be
stable), or f(x) < 0 for x1 < x < x2 (in which case x2 cannot be stable).

4 Get equation from phase line portrait problem #08

4.1 Statement: Get equation from phase line portrait problem #08

Consider the ode on the line
dx

dt
= f(x), (4.1)

where f is some function which has a continuous derivative. Assume that (4.1) has infinitely many critical points
−∞ < . . . xn < xn+1 < . . .∞. Assume that all the critical points are semi-stable. 2 Is this possible? Does a function
f = f(x) yielding this exist?

1 Dimensional analysis alone cannot distinguish F from 2F , or from πF , or from . . .
2 A critical point is semi-stable if the solutions diverge from the critical point on one side, and converge on the other.
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If the answer is no, prove it.
If the answer is yes, prove it by giving an example.

4.2 Answer: Get equation from phase line portrait problem #08

The answer is yes. Example f(x) = (sin(π x))2. (4.2)
In this case xn = n, where n is an arbitrary integer.

5 Implicit function problem #02

5.1 Statement: Implicit function problem #02

Consider the following equation f(x, λ) = x+ λ cos(x) + λ3 = 0, (5.1)

with the particular solution (x, λ) = (0, 0). Since fx(0, 0) = 1, the implicit function theorem guarantees that:
there is a neighborhood of λ = 0 where (5.1) has a unique solution, x = X(λ), such that X(0) = 0. Furthermore,
since f is an analytic function, X is an analytic function

of λ. This means that X has a Taylor series X =

∞∑
n=0

xn λ
n, (5.2)

which converges for |λ| small enough. Find x1, x3, x5, and xn for all even n.

Hint #1: Since X is small, write the cosine in (5.1) as a power series. Next substitute (5.2) into (5.1) and reorganize
the result in terms of powers of λ. Finally make the coefficient of each power of λ vanish.3 This will give you equations
that will allow you to solve for x0 first, then x1, and so on.
Hint #2: There is a special property of the equation that tells you what xn is for n even. Figure this out first, it
will save you a lot of pointless algebra. This problem involves much less calculation than you might think.

5.2 Answer: Implicit function problem #02

First, since X(0) = 0, x0 = 0. Note that (5.1) is invariant under the transformation x→ −x and λ→ −λ, which
implies that x = −X(−λ) is also a solution. From uniqueness it follows that X is an odd function, so that

xn = 0 for all n even. (5.3)

Next, substitute (5.2) into (5.1), and use the Taylor series for the cosine. Upon collecting equal powers of λ, this
yields

(1 + x1)λ+ (x3 −
1

2
x21 + 1)λ3 + (x5 − x1 x3 +

1

24
x41)λ5 + · · · = 0. (5.4)

Equating to zero the coefficients of the powers of λ, we obtain

x1 = −1, x3 = −
1

2
, x5 =

11

24
, . . . (5.5)

Further coefficients can be obtained by calculating the higher order terms in (5.4). The implicit function theorem
guarantees that the resulting equations will uniquely determine the coefficients xn.

3You only need to carry this calculation up to powers λn with n ≤ 5.
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6 Inverse function problem #01

6.1 Statement: Inverse function problem #01

Consider the following equation y = x+ sin(x) = f(x), (6.1)

where f(0) = 0 and f ′(0) = 2 6= 0. The inverse function theorem guarantees that there is a neighborhood of x = 0
where f has a unique inverse, x = X(y), such that X(0) = 0. Furthermore, since f is an analytic function, X is an
analytic function. This

means that X has a Taylor series X =

∞∑
n=0

xn y
n, (6.2)

which converges for |y| small enough. Find x1, x3, x5, and xn for all even n.

6.2 Answer: Inverse function problem #01

Since X(0) = 0, x0 = 0. Further, equation (6.1) is invariant under the transformation x→ −x and y → −y, thus
x = −X(−y) is also a solution. From uniqueness it follows that X is an odd function, so that

xn = 0 for all n even. (6.3)

Next, substitute (6.2) into (6.1), and use the Taylor series for the sine. Upon collecting equal powers of y, this yields

(2x1 − 1) y + (2x3 −
1

6
x31) y3 + (2x5 −

1

2
x21 x3 +

1

120
x51) y5 + · · · = 0. (6.4)

Equating to zero the coefficients of the powers of y, we obtain

x1 =
1

2
, x3 =

1

96
, x5 =

1

1920
, . . . (6.5)

Further coefficients can be obtained by calculating the higher order terms in (6.4). The implicit function theorem
guarantees that the resulting equations will uniquely determine the coefficients xn.

7 Phase line portrait problem #02

7.1 Statement: Phase line portrait problem #02

Consider the following ode on the line dx
dt

= f(x) = f(x) = x2 − x3. (7.1)

Draw its phase line portrait, indicating the critical points, and their stability properties.

In addition: describe quantitatively the behavior of the solutions near the critical points (i.e.: at what rate do they
approach or leave them), as well as the behavior of the solutions when |x| is large. In particular: Are there solutions
that cease to exist for some finite value of t, or are the solutions valid for all times? If some solutions are defined
for all times, and others are not: state a condition that guarantees that a solution is defined for all times — e.g.: if
x(t) is in some range/interval.
Important: Do not attempt to do this problem by solving the equation analytically. First do a graphic analysis to
obtain a qualitative picture of what happens. Then analize the behavior near critical point by solving the leading order
approximation (first nonvanishing term in a Taylor expansion of f). Finally, the behavior for |x| large can be similarly
obtained by looking at the dominant behavior of f . By the way, note that here all times means −∞ < t <∞; so
what happens in both limits t→ ±∞ matter.

7.2 Answer: Phase line portrait problem #02

The zeros of f are at x1 = 0 (a double zero) and x2 = 1 (a simple zero), with f positive for x < x2, and negative for
x > x2. See figure 7.1. It follows that x1 is an semi-stable critical point (stable from the left and unstable from the
right), while x2 is a stable critical point. The phase line portrait is as in figure 7.1.
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Figure 7.1: Problem 7, equation (7.1).
The zeros of f are at x1 = 0 and x2 = 1.
Left: plot of ẋ = f(x) versus x. Red: x-axis; blue: f(x).
Right: phase line portrait.

Because x2 is a simple zero of f , the solutions approach it exponentially, with a rate constant 4 r = −1. On the other
hand, for x small (near the double zero x1) the solutions
behave like the solutions to the ode ẋ = x2 — that is: x ∼

1

τ − t
, (7.2)

where τ is some constant,5 and t is far away from τ (so that x
is small). For t > τ , these are the solutions on the left (stable side) of x1, which approach it algebraically as t→∞.
For t < τ , these are the solutions on the right (unstable side) of x1, which approach it algebraically as t→ −∞.

Since f(x) ∼ −x3 for |x| � 1, when |x| becomes large on a solution,
the solution acquires the behavior x ∼ ±

1
√
t− τ

, (7.3)
where τ is some constant 6 and, of course, it must be t > τ (with t
close to τ so |x| is large). The negative sign in (7.3) corresponds to the solutions to the left of x1. These solutions
approach x = −∞ as t ↓ τ , and x = 0 as t→∞ — they do not exist for all times, only for τ < t < ∞. The
positive sign in (7.3) corresponds to the solutions to the right of x2. These solutions approach x =∞ as t ↓ τ , and
x = 1 as t→∞ — they do not exist for all times, only for τ < t <∞.
It follows that some solutions are NOT defined for all times.

Note that the solutions in 0 < x < 1 are defined for all times. They approach x = 0 (algebraically) as
t→ −∞, and x = 1 (exponentially) as t→∞. These are the only solutions defined for all times.

8 Toy model for shell buckling

8.1 Statement: Toy model for shell buckling

Hold a ping-pong ball between your thumb and index fingers and squeeze it. If you do not apply enough force, the
ball will deform slightly with a purely elastic response. But, if you push hard enough, the ball will buckle and you
will make a (permanent) dent on it — and the ball will be ruined. This is the phenomena of (thin) shell buckling.

Shell buckling is a very rich phenomena, 7 way beyond the scope of this course. Here we will study an extremely
simplified (1-D) version of this phenomena (the emphasis here being on “toy” model) where all the geometrical
richness of the original setting is gone, and only the buckling bifurcation remains.

A sketch depicting the model is shown in figure 8.1. Further assumptions and notation are:

1. Idealize the bead as a point mass.

2. Let x be the vertical distance, along the rod, of the bead from the horizontal line joining the spring supports.
Let x > 0 if the bead is above the supports and x < 0 if below.

4 The rate constant is given by f ′(x2). The solutions behave like x = x2 + constant er t near this critical point.
5 Of course, τ is a solution dependent constant.
6 Of course, τ is a solution dependent constant.
7 Lots of interesting and important questions arise. For example: What is the shape of the dent that forms? The dent’s edges have sharp

corners: why these corners form, and how do they propagate as further pressure is applied?
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 k k

 m

 rod
 support  support

A bead of mass m (black square) can slide along a
rigid vertical rod (in red). The bead is connected
by two equal springs (in blue), with spring constant
k, to two supports placed symmetrically on each
side of the rod. See the text for further details.

Figure 8.1: Toy model for shell buckling.

3. Let h > 0 be the distance of the spring supports from the rod, and let L > 0 be the springs equilibrium length.
Assume L > h, so that the springs are under compression for x = 0.

4. Hook’s law applies to the springs. Thus they exert a force of magnitude F = k (`− L), where ` is the spring
length, along the spring axis, pushing if ` < L, and pulling if ` > L.

5. When the bead slides along the rod, the motion is opposed by a friction force of magnitude b ẋ, where b > 0 is
a constant.

6. Because the rod is rigid, we need to consider only the vertical components of the various forces that act on
the bead. These forces are: (i) Gravity, of magnitude mg, pointing down. (ii) The forces by the springs.
(iii) Friction along the rod. Note that here we assume that the force gravity is significant, so that there is no
up-down symmetry in this problem.

PROBLEM TASKS:

A. Derive an ode for the bead position, and write it in appropriate a-dimensional variables. 8

B. Assume that friction is large, so that inertia can be neglected. Exactly which a-dimensional number has to be
small for friction to be “large”?

C. Analyze the bifurcations that occur for the equation resulting from item B, as the bead mass changes — in this
toy model, increasing the bead mass plays the role of squeezing harder on the ping-pong ball. What type of
bifurcation(s) occur?

Hint: It is a bad idea to try to do this by attempting to solve for the critical points and bifurcation thresholds
analytically. A qualitative, graphical, analysis is the best way to go.

D. The picture in figure 8.1 corresponds, in this toy model, to the ping-pong ball in a more-or-less spherical shape.
What is the “buckled” state?

E. What a-dimensional parameter controls when bifurcations happen? This under the assumption:

The ratio γ = L/h > 1 is kept fixed. (8.1)

Thus γ is not the bifurcation parameter to use; something else is.

8.2 Answer: Toy model for shell buckling

Newton’s law for the motion of the bead takes the form

mẍ+ b ẋ = −mg + 2 k
x√

x2 + h2

(
L−

√
x2 + h2

)
, (8.2)

where the factor 2 k arises because there are two springs, and the factor x/
√
x2 + h2 is to compute the projection

along the rod of the spring’s forces. Note also that the signs are correct: when the springs are under compression

(
√
x2 + h2 < L), and x > 0, the springs should be pushing x up — with the force sign switching if either x < 0 or√
x2 + h2 > L.

8 Suggestion: to a-dimensionalize use h for length and b/(2 k) for time.
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Select a-dimensional variables via x = h x̃ and t =
b

2 k
t̃. The equation then becomes

ε ẍ+ ẋ = −r +
x√

1 + x2

(
γ −

√
1 + x2

)
, (8.3)

where we have not written the tildes to simplify the notation,

ε =
2 km

b2
, and r =

mg

2 k h
. (8.4)

If ε� 1, we can neglect inertia. Thus we arrive at the final equation (the toy model equation)

ẋ = −r +
x√

1 + x2

(
γ −

√
1 + x2

)
︸ ︷︷ ︸

p=p(x)

= p(x)− r. (8.5)

Since γ is kept fixed, the bifurcation parameter is r. To understand the critical point structure of this equation, in
figure 8.2 we plot y = p(x) and y = r — this for some value of γ (there is no qualitative difference if γ is changed).
Let rc > 0 be the value of p at the (single) local maximum for x > 0 — that is rc = p(xc), where xc is the
location at which the local maximum occurs. Note that here we operate as if γ were a fixed constant, but (in fact)
both rc and xc are functions of γ — which must be computed numerically, if needed.

 y = p(x)

 y = r

 x

 y  y = rc

 x = xc

Figure 8.2: Critical points for the toy model for shell buckling. The critical points occur at the values of x where
y = r intersects y = p(x) — where p is defined in equation (8.5).

Three cases arise:
c1. Case 0 < r < rc. Three critical points: x1, x2, and x3 — which satisfy x1 < 0 < x2 < xc < x3 <

√
γ2 − 1.

Both x1 and x3 are stable, while x2 is unstable.

– x3 corresponds to the configuration in figure 8.1, with the bead being supported by the two (compressed)
springs above the level x = 0.

– x1 corresponds to a configuration where the bead is hanging from the two (stretched) springs. As follows
from item c3, this is the “buckled” state in this model.

c2. Case rc < r. Only one critical exists: the “buckled” state x1 — which is stable. 9

c3. Case rc = r. Critical threshold value at which a saddle-node bifurcation occurs. As r increases through rc,
x3 looses stability, and the system jumps to x1 (if it was in x3).

THE END.
9 Because we are assume a situation where gravity matters, there is no truly “un-buckled” state — at best a slightly deformed one.


