
Answers to P-Set # 01, (18.353/12.006/2.050)j

MIT (Fall 2023)

Rodolfo R. Rosales (MIT, Math. Dept., room 2-337, Cambridge, MA 02139)

September 18, 2023

Contents

1 Computer exercises with a 1-D map 1

1.1 Statement: Computer exercises with a 1-D map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Answer: Computer exercises with a 1D map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

List of Figures

1.1 Typical behavior near a period doubling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Chaos beyond c∞ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1 Computer exercises with a 1-D map

1.1 Statement: Computer exercises with a 1-D map.

The objective of this problem is to give an elementary first introduction to concepts such as: fixed point, stability,

bifurcations, and chaos, via “experimental” (i.e., numerical) computation. We do this by using a very simple

mathematical model. This model is highly abstract, but we will argue later in the course that the model is also (to a

significant degree) representative of the behavior of many real systems. In addition, this assignment also introduces

the kind of computing problems we shall often, but not always, assign.

In this model we will assume that the system is described by a single time-dependent variable, x(t). This variable

could represent, say, the globally averaged temperature on the Earth’s surface, the size of a particular population of

animals on some secluded island (or in a Petri dish), some particular stock market average, etc. Furthermore, we will

suppose that we are interested only in the values xn = x(tn) at discrete times tn = n∆t, where ∆t is some suitable

interval of time (say, a day). The evolution

of x in time may then be written as xn+1 = F (xn). (1.1)

where F is some function that describes the dynamics. For any of the examples

mentioned above, it is obvious that the “true” F would involve complicated equations. Rather than going into that

kind of detail, we consider below two

rather simple choices for F . That is: F (x) = µx, (1.2)

and F (x) = c π sin(x), (1.3)

where µ and c are (real) constants. These are your tasks:

1. For (1.1–1.2), without using the computer, what can you predict about the behavior of xn, given an initial

condition x0 6= 0? (Note: of particular interest is the behavior for n→∞).

1a. Qualitatively, what is different about the cases |µ| < 1, |µ| > 1, and |µ| = 1?

1b. What is the qualitative difference between the evolution with µ > 0 and µ < 0?

1c. Check your conclusions numerically (do not hand in any plots for this, you can even use a calculator).

Note: In this case x = 0 is a fixed point of the evolution (i.e.: xn+1 = xn if xn = 0), and your conclusions,

in particular, speak to the stability of this fixed point (what happens if a small perturbation is applied).

1



18.383 MIT, (Rosales) Computer exercises with a 1-D map. 2

2. We now turn to (1.1–1.3). For this example a MatLab script, IterateSineMap, is supplied. Please read the

script description at the top of the IterateSineMap.m file, which describes in detail what the script does and

how to use it. The aim of this part of the problem is to explore the behavior of (1.1–1.3) as the parameter

c changes. Notice that, if 0 ≤ c ≤ 1, then for 0 ≤ xn ≤ π, we have 0 ≤ xn+1 ≤ π. Thus we will restrict

the exploration to these ranges and ask How does xn behave for n large? (IterateSineMap was specifically

designed for this task).

The system (1.1–1.3) exhibits many behaviors. For example, xn may approach a constant (a fixed point) as

n → ∞, or it may approach a periodic cycle, where xn+p = xn (p is the period), or the n → ∞ behavior

may be chaotic (see remark 1.1), or it may exhibit intermittent chaos, where the sequence alternates (seemingly

randomly) between being close to a periodic cycle, and chaotic bursts. 1 These various behaviors correspond

to different values of c, with the transition from one to another occurring at critical values of c (of which there

are many; infinitely many, in fact).

A value c = cc is called a critical value if the long term evolution for xn changes qualitatively as c crosses cc.

These qualitative changes are called bifurcations. For example, on one side of cc the system may be attracted

to some fixed point x∗, and to a different fixed point on the other side. Or maybe the behavior switches from

fixed point to periodic of some period p > 1, or the period changes across cc, etc.

These are the questions you are asked to investigate:

2a. What happens for 0 ≤ c < c1 = 1/π ≈ 0.3183, and for c1 < c < c2, where 2 c2 ≈ 0.72. Can you

explain why c1 happens at 1/π? Hint: Linearize the map for x small, and use part 1.

Note that c1 and c2 are critical values, or bifurcation points.

2b. What happens for c slightly above c2? Hint: Check c = 0.73 first, and then explore more carefully.

2c. In fact, there is an infinite sequence of critical points c1 < c2 < c3 < . . ., with limn→∞ cn = c∞
(where c∞ ≈ 0.8655791). In each “window” cn < c < cn+1, the limit behavior of xn is very simple

— in part 2b you should already have discovered what happens for c2 < c < c3.

Compute the first few cn, say, c3 and c4, and describe the behavior in the corresponding windows,

say c3 < c < c4 and c4 < c < c5 — note that you do not need to know c5 to ascertain the behavior in

c4 < c < c5. Provide values with, at least, 4 accurate decimal digits: cn ≈ 0.abcd.

Approximate values are as follows: c3 ≈ 0.805, c4 ≈ 0.850, c5 ≈ 0.863, and c6 ≈ 0.865. Note that

beyond c8 4 digits are not enough to tell the values apart, so the calculations get increasingly harder.

2d. From your results in 2c, can you guess what the pattern is for cn < c < cn+1.

2e. Now look at what happens slightly beyond c∞. Specifically, what do you see for c = 0.866? Do your

best here; see remark 1.1.

2f. What do you see for c = 0.880876?

2g. What do you see for c = 0.8814? Note: in fact, the behavior you see here happens for a whole window,

0.880877 · · · < c < 0.881464 . . ..

Optional: keep going a little beyond c = 0.881464 . . ., what happens?

2h. What do you see for c = 0.9395? Note: in fact, the behavior you see here happens for a whole window,

0.937819 · · · < c < 0.940943 . . ..

Optional: keep going a little beyond c = 0.940943 . . ., what happens?

1The MatLab script provided allows you to check for these behaviors.
2A more precise value is c2 = 0.719961682979535 . . . We will see how this can be computed later in the semester.



18.383 MIT, (Rosales) Computer exercises with a 1-D map. 3

Remark 1.1 For this problem we will not define chaos (will be done later). Here simply check that the behavior is

not periodic of any “reasonable” period,† e.g.: 1 ≤ p ≤ 16 (many can be excluded by simple eye-sight). ♣
† Because you are doing this in a computer, there is only a finite number of values xn can take, so the computed sequence xn

will always be periodic ... but the period can be huge, for any practical purposes “infinite”.

1.2 Answer: Computer exercises with a 1-D map

The problem solution, with the same item numeration used in the statement, is after the next 3 remarks.

Remark 1.2 Because of the issues pointed in remark 1.4, there will be no penalty if you do not get c3 and c4 with

4 accurate digits — in fact, you only need 3 to be able to answer the questions where they matter. The key thing I

hope you found is the behaviors described below in the answer, albeit not with the amount of detail here. ♣

Remark 1.3 Calculating the various thresholds, “naive” approach. I will illustrate how to do this, using the MatLab script

SineMapCompute, with the example of c3 — the value at the boundary between the period 2 and period 4 attractors. Let us

begin by assuming that you have already found some value of c for which a period 2 attractor happens; say: c = 0.75. Then

start “slowly” increasing c till you loose the period 2; say, you try: c = 0.77, 0.79, 0.81, 0.83, 0.85. OK, now you will know

that 0.83 < c3 < 0.85, and that c = 0.85 gives period 4. Now you can repeat the process with a smaller ∆c, and get, say:

0.831 < c3 < 0.834. And so on.

Efficiency: You can make the process above more efficient by doing “bisection”. First do a few relatively large ∆c, and find that,

say 0.77 < c < 0.85. Then try the middle point, 0.81, and learn that 0.81 < c < 0.85. Repeat. You could even program this

approach, but the time that will take you to write and debug the program will likely be longer than just doing it yourself.

Important: (i) As you get closer to the critical value, you will notice that the dynamical system converges to it slower, so you need

to make the parameter n1 (how many iterates are done before looking at the attractor). (ii) SineMapCompute includes a parameter,

n3, that allows you to check if the answer has period n3. This is critical because near c3 the period 4 solutions on c > c3 cannot be

distinguished “by eyesight” from a period 2. (iii) If the period check tells you that the error in satisfying, say, the period 4 condition

is 10−14 (or some other rather small number), this does not mean “it is not period 4”. You have limited accuracy, so something

that small has to be interpreted as “it may be period 4” — see remark 1.3. ♣

Remark 1.4 Limits on accuracy. You may think that, if you are working in double precision (with about 16 digits) you should be

able to get the cn with a lot of digits (if you are patient enough). But this is not true, the approach in remark 1.3 will, generally,

not be able to provide you with more than a few digits, 6 at best (and it is rather easy to get confused and make mistakes) —

“why” is explained in some detail in remark 1.6

Can you do better? The answer is yes, significantly better, but it requires using theoretical knowledge not yet introduced in the

lectures. Using such knowledge, much better approaches to computing the thresholds can be developed. I used them to get my

numbers in the final answers, though when I wrote the problem statement I used rough values for the thresholds obtained with the

naive approach, and some were not accurate. ♣

1. The solution to (1.1–1.2) can be written explicitly: xn = µn x0. (1.4)

It follows that:

1a. When |µ| < 1, xn → 0 as n→∞. Hence the fixed point x = 0 is an attractor, in particular: stable.

When |µ| > 1, |xn| → 0 as n→∞. There is no attractor, and x = 0 is unstable.

When |µ| = 1, |xn| ≡ |x0|. There is no attractor, but x = 0 is “neutrally” stable (perturbations neither

grow nor decay in size).

1b. When µ > 0 all the iterates have the same sign. No “oscillations”.

When µ < 0 the iterates alternate sign. Period 2 “oscillations” (damped if |µ| < 1, and growing

if |µ| > 1).

2. The solution below was done using the supplied MatLab script IterateSineMap.



18.383 MIT, (Rosales) Computer exercises with a 1-D map. 4

2a. For 0 ≤ c < 1/π, xn → 0 as n→∞.

For 1/π < c < c2 (c2 = 0.719961682979535 . . .), xn → x∗, where x∗ > 0 is another fixed point of

the map, x∗ = c π sin(x∗) —as c grows, x∗ grows as well. Hence c = 1/π is a bifurcation point.

Notice that, for 0 ≤ c < 1/π, the equation x = c π sin(x) has only one solution, x = 0, while for

c > 1/π a second solution, x = x∗, appears on 0 < x < π. Graphically you can see this because for

c < c1 the curve y = cπ sin(x) is below y = x for 0 < x ≤ π, while for c > c1 a portion bulges above.

Finally, linearizing (1.1–1.3) for xn small yields xn+1 = c π xn. This is (1.1–1.2) with µ = c π. Thus

we see that, as c crosses 1/π, the origin changes stability.

Note about c2. Obviously the value given above was not computed using IterateSineMap. It was done as follows: c2

is the value of c at which x∗ ceases to be stable. From item 1 we know that this means that the derivative of the map

there must have modulus 1, and it is easy to see graphically that it must be −1 (not 1). Thus we get the two equations:

x∗ = c2 sin(x∗) and −1 = c2 cos(x∗). Using the first to eliminate c2 then gives 0 = 1 + x∗ cos(x∗)/ sin(x∗),

which can be solved to find x∗ for c = c2. Then c2 = x∗/ sin(x∗). A more involved version of this process can be

used to find the other critical values cn. ♣

2b. Above c2 there is a “window” c2 < c < c3, where

xn, n → ∞, approaches a period 2 state. Thus

c = c2 is a bifurcation point. The figure on the

right shows the period 2 state for c = 0.8, after 2×106

iterations from a random x0. The “deviations from pe-

riodic calculation” (not shown) confirms† the period 2.

For c slightly above c2 the amplitude of the oscillations

is small, with the amplitude growing with c — later on

we will show that they grow like
√
c− c2 when c−c2

is small. Note that, depending on x0, the “phase” of

the asymptotic oscillations can change by 1. 2 4 6 8 10 12 14 16
1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

 n

 x

 Iterates for c = 0.8 

† The “deviations from periodic calculation” plots the

difference xn+p − xn (p = 2 in this case). Since the xn are O(1), and each is represented by 16 digits only,3 if the

difference xn+1 − xn is smaller than 10−16, then it is zero. Yet IterateSineMap plots xn+p − xn using a vertical

scale of ±10−100. Do not be fooled by this scale, it is a default I set-up because a plot needs some vertical scale.

2c. A careful 4 calculation yields c3 ≈ 0.8332663537, c4 ≈ 0.8586090599, c5 ≈ 0.8640841737, . . . , with

c∞ ≈ 0.8655792688.

In each “window” cn < c < cn+1, the limit behavior of xn

is a periodic state with period 2n−1. For the obvious reason,

this is called a period doubling cascade. The figure on the right

shows the period 4 state for c = 0.84, after 2 × 106 iterations

from a random x0. The “deviations from periodic calculation”

(not shown) confirms the period 4. Note: depending on x0, the

asymptotic oscillations’ “phase” may change by 1, 2, or 3.

At the lower end of each window the periodic state is very

close to the prior window periodic state. This is illustrated in

figure 1.1 — again, the “error” behaves like
√
c− cn).

2 4 6 8 10 12 14 16

1.4

1.6

1.8

2

2.2

2.4

2.6

 n

 x

 Iterates for c = 0.84 

Note: In the problem statement I gave approximate values for some cn’s. The intention was to give you a rough idea

of what the values are, to limit your search to a small range of c. Unfortunately I wrote these values with 3 digits

3Technically, I should be doing this analysis using binary notation, but for the point made here this is not important.
4These numbers were not obtained using IterateSineMap, but using a process similar to the one used for c2, explained in item 2a. With

IterateSineMap it is very hard to get more than a few digits — see remarks 1.3, 1.4, and 1.6.



18.383 MIT, (Rosales) Computer exercises with a 1-D map. 5

(not sure what I was thinking!), which probably gave the wrong impression as to how accurate the values were. What I

should have stated is: 0.82 < c3 < c4 < c5 < 0.865. Also, you were asked to compute c3 and c4 only. ♣

2 4 6 8 10 12 14 16

2.01

2.015

2.02

2.025

2.03

2.035

2.04

2.045

2.05

 n

 x

 Iterates for c = 0.7201 

2 4 6 8 10 12 14 16
1.4

1.6

1.8

2

2.2

2.4

 n
 x

 Iterates for c = 0.83328 

2 4 6 8 10 12 14 16
0.01

0.005

0

0.005

0.01

 n

 s
hi

ft 
by

 2
 d

iff
er

en
ce

 Iterates for c = 0.83328 

Figure 1.1: Typical behavior near a period doubling. The left panel shows the limit behavior for c2 < c = 0.721 (very close to

the left end of the period 2 window) after 2× 106 iterations of the map. The middle panel is the limit behavior (also after 2× 106

iterations) for c3 < c = 0.83328 (very close to the left end of the period 4 window). Notice that the sequence in the middle panel

seems to be period 2, but it is not, as the right panel shows — though the deviations from period 2 are small. The deviations from

period 2 (resp. period 4) calculations, not shown, for the left panel (resp. middle panel) confirm the periods 2 and 4.

2d. The answer to the question in item 2d is included in the answer to item 2c.

2e. Slightly beyond c∞ we find chaotic attractors, as illustrated by the left panel in figure 1.2. Following

remark 1.1, I tested this attractor for all the periods between 2 and 17, and many more (which it failed)

— but see remark 1.5. However, there is a second test for chaos that is useful to perform. Namely:

5 10 15 20 25 30 35 40 45 50 55 60

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

 n

 x

 Iterates for c = 0.866 

50 100 150 200 250 300 350 400
2

1

0

1

2

3

x 10 5

 n

 P
er

tu
rb

at
io

n 
to

 a
ttr

ac
to

r. 

 c = 0.86557 sine map. 

100 200 300 400 500 600 700 800 900 1000

0.1

0.05

0

0.05

0.1

 n

 P
er

tu
rb

at
io

n 
to

 a
ttr

ac
to

r. 

 c = 0.866 sine map. 

Figure 1.2: Chaos beyond c∞. The left panel shows the limit behavior for c = 0.866, slightly above c∞, after 2×106 iterations

of the map. The middle panel shows the behavior of a 10−5 perturbation applied to a period 128 attractor (c = 0.86557). The

right panel shows the behavior of a 10−5 perturbation applied to the attractor on the left panel.

test the sensitivity of the attractor to small perturbations. To do this we first iterate the map for

1 ≤ n ≤ n1 +n3, where n1 is large enough that transients decay and xn is in the attractor for n > n1

(e.g.: n1 = 106). At n1 we start a second iteration, with a perturbed initial data yn1 = xn1 + δ, where

δ is small (e.g.: δ = 10−5). Then † we plot the difference yn − xn for n1 < n ≤ n1 + n3. The results

of this test are shown in the middle and right panel of figure 1.2. When the test is used on a periodic

attractor, the perturbation never grows beyond a few times the initial size, and it eventually decays (in

the figure we used c = 0.86557, which gives a period 128 attractor). On the other hand, for a chaotic

attractor, the perturbation grows, at first exponentially, till it reaches a size orders of magnitude larger

than δ, and then it does not decay (although its size may fluctuate wildly). For c = 0.866 we found a

magnification of δ by a factor of 104. This sensitivity to perturbations is a very important property of

chaos, and the basis for the “butterfly effect”.



18.383 MIT, (Rosales) Computer exercises with a 1-D map. 6

† This can be done with the script IterateSineMapAttSensi.m, handed out with this answer. This script has a parameter

n2, used to plot the attractor, xn, for n1 < n ≤ n1 + n2. Do not take n2 large, or you will not see much.

Remark 1.5 Errors in period testing for c = 0.866. Some extremely long periods gave small errors in the

period test. For example, p = 5040 = 243257 lead to maxn |xn+p − xn| = O(10−12). I do not know

the reason for this; I am not even sure it is not a “numerical effect” — i.e.: I do not trust a calculation with

such a long period. ♣

2f. The picture on the right shows the behavior of “the error” for the

“period 6 check” calculation of the attractor for c = 0.880876.

What we see is long intervals, O(1000) in n, where the error is

small, interrupted by short bursts where the error is much larger.

In terms of the attractor (plot not shown), this corresponds to long

intervals where the attractor almost looks like a period 6 sequence,

with short bursts where it looks “random”† (no pattern). This

behavior is called “intermittent chaos”, because it resembles the

phenomena of “intermittent turbulence” observed in some fluid

dynamics experiments.

† We use the word random loosely here. The behavior is deterministic!

500 1000 1500 2000 2500 3000 3500 4000

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

 n

 s
hi

ft 
by

 6
 d

iff
er

en
ce

 Iterates for c = 0.8808760 

In fact, for c > c6, 0 (where 0.880877 < c6, 0 < 0.880880) there is a “window” where the attractor

is a period 6 sequence — see the answer to item 2g. Below this window, 0 < c6, 0 − c small, period 6

intermittent chaos happens — you can check this with IterateSineMap for 0.880870 ≤ c ≤ 0.880876.

Here, as c decreases, the effect gets less visible: the near-period 6 intervals get shorter, and the period

6 error in these regions gets larger. Eventually you just see uninterrupted chaotic behavior (there is no

sharp boundary, though). The explanation to this behavior is analogous to the “critical slowdown” near

critical points. For 0 < c6, 0 − c small, if xn gets close to a member of the (stable) period 6 cycle that

appears at c = c6, 0, the dynamics gets trapped there, and evolves slowly away from being near the period

6 cycle. Once it gets away, it “resumes” its chaotic behavior, till at some later time, xn again gets close

to the cycle, and so on. Note that the time intervals between chaotic bursts are also chaotic in length.

2g. The picture on the right shows the c = 0.8814 attractor. It is

a period 6 sequence — the “deviations from periodic calculation”

(not shown) confirms this period. This behavior occurs for a whole

window, c6, 0 < c < c6, 1, where 0.8818 < c6, 1 < 0.8819.†

Beyond this window, another period doubling cascade occurs,

with c6, 0 < c6, 1 < · · · < c6, n < c6,∞, where the attractor

has period 6 × 2n for c6, n < c < c6, n+1, and chaos is found

beyond c6,∞.

† The problem statement has the overly precise c6, 1 = 0.881464 . . .,

which happens to have an incorrect 4-th digit! 2 4 6 8 10 12 14 16 18

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

 n

 x

 Iterates for c = 0.8814 



18.383 MIT, (Rosales) Computer exercises with a 1-D map. 7

2h. The picture on the right shows the c = 0.9395 attractor; a

period 3 sequence — the “deviations from periodic calculation”

(not shown) confirms this period. This behavior persists for the

window c3, 0 < c < c3, 1, where 0.937 < c3, 0 < 0.938 and

0.942 < c3, 1 < 0.943. Beyond this, another period doubling

cascade occurs, with c3, 0 < c3, 1 < · · · < c3, n < c3,∞,

where the attractor has period 3× 2n for c3, n < c < c3, n+1,

and chaos is found beyond c3,∞.

† The problem statement has the overly precise c3, 1 = 0.940943 . . .,

which happens to have an incorrect 3-rd digit! 1 2 3 4 5 6 7

1

1.5

2

2.5

 n

 x

 Iterates for c = 0.9395 

Note that, for 0 < c3, 0 − c small, period 3 intermittent chaos happens — the discussion in item 2f

has an exact analog here.

Remark 1.6 Errors in computing thresholds. The first thing to point out is that, as c crosses a cn going up, the “perturbation”

to the prior attractor (e.g: failure to satisfy the period 2 condition) has size O(
√
c− cn) when c− cn is small. Now, if your have

only 16 significant digits, 5 you can only tell that you “have crossed cn” only once
√
c− cn ≈ 10−16; you will not be able to tell

the effect of smaller changes because they are beyond the resolution you have. This gives you the largest penalty, at best you can

hope for 8 digits in cn.

But this is not the end of it. You also have to consider the fact that in fixed point calculations, the last digit jumps around. The

behavior is not “random” (i.e.: it is deterministic 6) but its effect is quite similar to a random perturbation. Because the approach

to the attractor is very slow close to cn, these perturbations are able to derail it, creating a fuzzy region near cn, where it is not

clear which side of the critical number you are. This makes things worse, and 2 or more digits may be lost. As an example of this,

consider what happens with the period 3 check for c near 0.9395 (see item 2h). Running the “deviations from periodic calculation”

for several values of c, in the range c = 0.9391 to c = 0.9401, gave results where the error oscillated between 0 and O(10−15)

for changes in the 4-th (!!) decimal digit in c — note that, while this sort of stuff happens with any machine, the details depend

on the machine (and the algorithm used to compute the sine). ♣

THE END.

5Technically, I should be doing this analysis using binary notation, but at the rough level here this is not important.
6If you run the calculation twice, in the same computer, you will get the same answer.


