
Tri
ky Asymptoti
s Fixed Point Notes.

MIT

Rodolfo R. Rosales

�

. O
tober 31, 2000.

Contents

1 Introdu
tion. 2

2 Qualitative analysis. 2

3 Quantitative analysis, and failure for n = 2. 6

4 Resolution of the diÆ
ulty in the 
ase n = 2. 9

5 Exa
t solution of the orbit equation. 14

6 Commented Bibliography. 15

List of Figures

1.1 Phase plane portrait for the Dipole Fixed Point system (n = 1.) . . . . . . . . . . . 3

3.1 Phase plane portrait for the Dipole Fixed Point system (n = 5.) . . . . . . . . . . . 10

Abstra
t

In this notes we analyze an example of a linearly degenerate 
riti
al point, illustrating some

of the standard te
hniques one must use when dealing with nonlinear systems near a 
riti
al

point. For a parti
ular value of a parameter, these te
hniques fail and we show how to get

around them. For ODE's the situations where standard approximations fail are reasonably

well understood, but this is not the 
ase for more general systems. Thus we do the exposition

here trying to emphasize generi
 ideas and te
hniques, useful beyond the 
ontext of ODE's.

�

MIT, Department of Mathemati
s, room 2-337, Cambridge, MA 02139.

1



Tri
ky asymptoti
s �xed point. Rosales, Fall 2000. 2

1 Introdu
tion.

Here we 
onsider some subtle issues that arise while analyzing the behavior of the orbits near the

(single, thus isolated) 
riti
al point at the origin of the Dipole Fixed Point system (see problem

6.1.9 in Strogatz book)

dx

dt

=

2

n

xy ; and

dy

dt

= y

2

� x

2

; (1.1)

where 0 < n � 2 is a 
onstant. Our obje
tive is to illustrate how one 
an analyze the behavior

of the orbits near this linearly degenerate 
riti
al point and arrive at a qualitatively

1


orre
t

des
ription of the phase portrait. We will use for this \standard" asymptoti
 analysis te
hniques.

The 
ase n = 2 is of parti
ular interest, be
ause then the standard te
hniques fail, and some

extra tri
ks are needed to make things work.

Just so we know what we are dealing with, a 
omputer made phase portrait for the system

2

(
ase n = 1) is shown in �gure 1.1. Other values of 0 < n � 2 give qualitatively similar pi
tures.

However, for n > 2 there is a qualitative 
hange in the pi
ture. We will not deal with the 
ase n > 2

here, but the analysis will show how it is that things 
hange then. The threshold between the two

behaviors is pre
isely the tri
ky 
ase where \standard" asymptoti
 analysis te
hniques do not work.

2 Qualitative analysis.

We begin by sear
hing for invariant 
urves, symmetries, null
lines, and general \orbit shape" prop-

erties for the system in (1.1).

A. Symmetries. The equations in (1.1) are invariant under the transformations:

3

A1. x �! �x

A2. y �! �y and t �! �t

A1 andA2 show thatwe need only study the behav-

ior of the equation in the quadrant x � 0, y � 0.

A3. x �! ax, y �! at, and t �! t=a, for any 
onstant a > 0.

1

With quantitative extra information.

2

The analysis will, however, pro
eed in a form that is independent of the information shown in this pi
ture.

3

Noti
e that these types of invarian
es o

ur as a rule when analyzing the \leading order" behavior near degenerate


riti
al points; be
ause su
h systems tend to have homogeneous simple stru
tures.
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 Dipole Fixed Point: x
t
 = 2xy/n, y

t
 = y2 - x 2, n = 1.

Figure 1.1: Phase plane portrait for the Dipole Fixed Point system (1.1) for n = 1. The qualitative

details of the portrait do not 
hange in the range 0 < n � 2. However, for n > 2 di�eren
es arise.

The last set of symmetries (A3) shows that we need only 
ompute a few orbits, sin
e on
e we

have one orbit, we 
an get others by expanding/
ontra
ting it by arbitrary fa
tors

a > 0. Note that we say \a few" here, not \one"! This is be
ause the expansion/
ontra
tions

of a single orbit need not �ll up the whole phase spa
e, but just some fra
tion of it. A

parti
ularly extreme example of this 
an be seen in �gure 1.1, where the orbit given by y > 0

and x � 0 simply gives ba
k itself upon expansion. On the other hand, we will show that

any of the orbits on x > 0 (or x < 0) gives all the orbits on x > 0 (respe
tively, x < 0) upon

expansion/
ontra
tion.

4

A
tually: this is, pre
isely, the property that is lost for n > 2!

Note: (A2) shows that this system is reversible. On the other hand, be
ause there are open

4

It even gives the spe
ial orbits on the y-axis by taking a =1, and the 
riti
al point by taking a = 0.
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sets of orbits that are attra
ted by the 
riti
al point (we will show this later), the system is not


onservative. In fa
t, this is an example of a reversible, non-
onservative system with a minimum

number of 
riti
al points.

B. Simple invariant 
urves. The y-axis (x � 0) is an invariant line. Along it the 
ow is

in the dire
tion of in
reasing y, with vanishing derivative at the origin only. This invariant

line is 
learly seen in �gure 1.1.

For n > 2, two further (simple) invariant lines are: y = �

p

n

p

n� 2

x.

Whenever a one parameter family of symmetries exist (su
h as (A3)), you should look for

invariant 
urves that are invariant under the whole family. In this 
ase, this means looking

for straight lines (whi
h is what we just did.)

C. Null
lines. The null
lines are given by

C1. The x-axis (y � 0), where _x = 0 (and, for x 6= 0, _y < 0.)

C2. The y-axis (x � 0), where _x = 0 (and, for y 6= 0, _y > 0.)

C3. The lines y = �x, where _y = 0. In the �rst quadrant we also have _x > 0 here.

D. Orbit shape properties. In the �rst quadrant (from (A) above, it is enough to study

this x > 0 and y > 0 quadrant only), 
onsider the equation for the orbits

dy

dx

=

n(y

2

� x

2

)

2xy

=

n

2

 

y

x

�

x

y

!

: (2.1)

A simple 
omputation then shows that:

d

2

y

dx

2

=

n

2

 

1

x

+

x

y

2

!

dy

dx

�

n

2

 

y

x

2

+

1

y

!

= �

n

4x

2

y

3

�

(2� n)y

2

+ nx

2

� �

y

2

+ x

2

�

< 0 : (2.2)

This shows that the orbits are (stri
tly) 
on
ave in this quadrant. Note, however, that

the inequality breaks down for n > 2. Then the orbits are 
on
ave for (n� 2)y

2

< nx

2

and


onvex for (n� 2)y

2

> nx

2

.
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All this information 
an now be put together, to obtain a �rst approximation to what the

phase portrait must look like, as follows:

I. Region 0 < y < x ( _y < 0 and _x > 0.) The orbits enter this region (horizontally)

a
ross the null
line y = x, bend down, and must eventually exit the region (verti
ally) a
ross

the null
line y = 0. It should be 
lear that, on
e we show that one orbit exhibiting this behav-

ior o

urs, then all the others will be expansion/
ontra
tions of this one and, in parti
ular, of

ea
h other (see (A3).)

The only point that must be 
lari�ed here is why we say above that the orbit \must eventually

exit the region"? Why are we ex
luding the possibility that y will de
rease, and x will in
rease,

but in su
h a fashion that the orbit diverges to in�nity, without ever making it to the x-axis?

The answer to this is very simple: this would require the orbit to have an in
e
tion point,

whi
h it 
annot have.

5

II. Region 0 < x < y ( _y > 0 and _x > 0.) Considering the 
ow ba
kwards in time, we

see that all the orbits that exit this region (horizontally, entering region I) a
ross the null
line

y = x, must originate at the 
riti
al point.

However: do all the orbits that originate at the 
riti
al point, exit this region a
ross the

null
line y = x? Or is it possible for su
h an orbit to rea
h in�nity without ever leaving this

region? | in fa
t, this is pre
isely what happens when n > 2, when all the orbits in the region

p

n� 2 y >

p

nx do this. Figure 1.1 seems to indi
ate that this is not the 
ase, but: how 
an

be sure that a very thin pen
il of orbits hugging the y-axis does not exist?

In se
tion 3 we will show that all the orbits leave the 
riti
al point with in�nite

slope (i.e.: verti
ally). Consider now any orbit that exits this region through the null
line

y = x, and (we know) starts verti
ally at the 
riti
al point. We also know that all the ex-

pansions/
ontra
tions of this orbit must also be orbits (see (A)), and it should be 
lear that

these will �ll up this region 
ompletely (the fa
t that the orbit starts verti
ally is 
ru
ial for

this.) But then there is no spa
e left for the alternative type of orbits suggested in the prior

paragraph, thus there are none. This 
lari�es the point in the prior paragraph.

5

See (D) | noti
e that the orbits are always 
on
ave in this region, for all values of n > 0.
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III. Con
lusion. With this information, and using the symmetries in (A), we 
an draw a

qualitatively 
orre
t phase plane portrait, whi
h will look as the one shown in �gure 1.1. It

should be 
lear from this �gure that:

The index of the 
riti
al point is I = 2.

3 Quantitative analysis, and failure for n = 2.

Our aim in this se
tion is to get some quantitative information about the orbits near the 
riti
al

point. In parti
ular, exa
tly how they approa
h or leave it.

Our approa
h below is \semi-rigorous", in the sense that we try to justify all the steps as

best as possible, without going to \extremes" (whatever this means). 100% mathemati
al rigor in


al
ulations like the ones that follow is possible in simple examples like the one we are doing | and

not even very hard | but qui
kly be
omes prohibitive as the 
omplexity of the problems in
reases.

But the type of te
hniques and way of thinking that we follow below remain useful well beyond the

point where full mathemati
al rigor is 
urrently a
hievable. Thus, provided one is willing to pay

the pri
e of not having the \absolute" 
ertainty that full mathemati
al rigor gives, large gains 
an

be made | while maintaining a \reasonable" level of 
ertainty. This point of view is pretty 
lose

to the one adopted by Strogatz in his book.

We begin by showing the result announ
ed (and used) towards the end of se
tion 2, namely: that

all the orbits leave/approa
h the 
riti
al point verti
ally. As before,

we restri
t out attention to the �rst quadrant, and assume x; y > 0.

a. All the orbits must have a tangent limit dire
tion as they approa
h the origin. This follows

easily from the 
on
avity of the orbits (see (D)): as t! �1, the slope

dy

dx

in
reases mono-

toni
ally. Thus, it must have a well de�ned limit (whi
h may be 1; in fa
t, the aim here is

to show that this limit is 1.)

b. Suppose that there is an orbit that does not approa
h the 
riti
al point verti
ally. Then, the

result in item (a) shows that we should be able to write

y � �x ; for 0 < x� x ; (3.1)
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where 1 � � <1 is a 
onstant,

6

in fa
t � = lim

x!0

dy

dx

. Substitution of this into equation (2.1)

then yields (upon taking the limit x! 0)

� =

n

2

�

��

1

�

�

() (n� 2)�

2

= n ; (3.2)

whi
h has no solution for 0 < n � 2! It follows that an orbit approa
hing the 
riti
al point at

a �nite slope 
annot o

ur | whi
h is pre
isely what we wanted to show.

We now be
ome more ambitious and ask the question: How exa
tly do the orbits leave the


riti
al point? | that is to say: What is the leading order behavior in their shape

for 0 < x << 1? As we will show later (see remark 3.2), the answer to this question is useful in


al
ulating the rate (in time) at whi
h the solutions approa
h the 
riti
al point.

To answer this last question we pro
eed as follows: We know that the orbits have in�nite slope near

the 
riti
al point, thus we 
an write

y � x for 0 < x� 1 : (3.3)

Using this, we should be able to repla
e equation (2.1) by the approximation

dy

dx

�

n y

2

2xy

=

ny

2x

: (3.4)

This yields

y � �x

n=2

; (3.5)

where � is a 
onstant. This last step is not rigorous, by a long shot, and we must be a bit 
areful

before a

epting it. Equation (3.4) is 
orre
t (the negle
ted terms are smaller than the ones kept),

but it is not 
lear that (upon integration) the negle
ted terms will not end up having a signi�
ant


ontribution to the solution of the equation.

Thus before we a

ept equation (3.5) we must make some basi
 
he
ks (these sort of


he
ks are important, you must always try to do as mu
h as it is reasonable and you 
an do along

these lines), su
h as:

6

We know that � � 1 be
ause the orbit must leave the 
riti
al point staying above the line y = x.
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. Consisten
y with known fa
ts. For example:


1. For 0 < n < 2, (3.5) is 
onsistent with (3.3).


2. For n > 2, (3.5) is not 
onsistent with (3.3). However, our proof that the orbits approa
h

the 
riti
al point verti
ally (whi
h is what (3.3) is based on) does not apply for n > 2.

In fa
t, for n > 2, (3.2) provides a very de�nite (neither in�nite nor zero) dire
tion of

approa
h | whi
h happens to agree with the invariant lines mentioned in (B) earlier.

So, there is no 
ontradi
tion (see remark 3.1 below for a brief des
ription of what the

situation is when n > 2.)


3. For n = 2, (3.5) is not 
onsistent with (3.3). Sin
e our proof that the orbits approa
h the


riti
al point verti
ally (whi
h implies (3.3)) does apply for n = 2, we have a problem

here, a rather tri
ky one, whi
h we will address in se
tion 4 below.

d. Self-
onsisten
y (plug in the proposed approximation into the full equation and 
he
k

that the negle
ted terms are indeed small). In this 
ase the negle
ted term in the equation is

nx

2y

, whi
h has size (using (3.5))

nx

2y

= O(x

(2�n)=2

) ; while

dy

dx

=

ny

2x

= O(x

(n�2)=2

) :

For the retained terms to be smaller than the negle
ted terms, we need (2� n)=2 > (n� 2)=2,

whi
h is true only for n < 2. Thus (3.5) is self-
onsistent only for n < 2.

e. Estimate the error. That is, write the solution as

y = �x

n=2

+ y

1

;

and assume y

1

� �x

n=2

. Then use this to get an approximate equation for y

1

, solve it, and


he
k that, indeed: y

1

� �x

n=2

.

In the 
ase 0 < n < 2 (the only one worth doing this for, sin
e the other 
ases have already

failed the two prior tests) one 
an do not only this, but repeat the pro
ess over and over again,

obtaining at ea
h stage higher order asymptoti
 approximations to the solution. That is, an

asymptoti
 series of the form

y = �x

n=2

+ y

1

+ y

2

+ y

3

+ : : : ; (3.6)

where y

n+1

� y

n

, 
an be systemati
ally 
omputed.



Tri
ky asymptoti
s �xed point. Rosales, Fall 2000. 9

Remark 3.1 What happens when n > 2.

The same methods that work for 0 < n < 2 
an be used to study this 
ase (but a bit more work

is needed). The main di�eren
e in the phase portrait o

urs be
ause all the orbits (ex
ept for the

spe
ial ones along the y-axis) approa
h the 
riti
al point along the lines

p

n� 2 y = �

p

n x.

For

p

n� 2 jyj < �

p

n jxj, the orbits look rather similar to the orbits in the 
ase 0 < n < 2, that

is to say: 
losed loops starting and ending at the 
riti
al point, ex
ept that they approa
h the 
riti
al

point along the lines

p

n� 2 y = �

p

n x, not the y-axis.

For

p

n� 2 jyj > �

p

n jxj, the orbits approa
h the 
riti
al point at one end (along the lines

p

n� 2 y = �

p

n x) and in�nity at the other (ending parallel to the y-axis there). In between their

slopes vary steadily (no in
e
tion points) from one limit to the other.

Figure 3.1 shows a typi
al phase plane portrait for the n > 2 
ase. From the �gure it should be


lear that we still have for the index: I = 2.

Remark 3.2 Rate of approa
h to the 
riti
al point (0 < n < 2.)

Substituting (3.5) into (1.1), we obtain (near the 
riti
al point, where both x and y are small)

dx

dt

�

2�

n

x

(n+2)=2

; and

dy

dt

� y

2

;

where (in the se
ond equation) we simply used the fa
t that y � x. Thus

x = O

 

1

(�t)

2=n

!

and y = O

�

1

t

�

; as t! �1 :

4 Resolution of the diÆ
ulty in the 
ase n = 2.

Again we restri
t out attention to the �rst quadrant, and assume x; y > 0.

The results of se
tion 3 are quite 
ontradi
tory, when it 
omes to the 
ase when n = 2. On the

one hand, we showed that (3.3) must apply. But, on the other hand, when we implemented the


onsequen
es of this result (in (3.4)) we arrived at the 
ontradi
tory result in (3.5). As we pointed

out, the step from (3.4) to (3.5), is not foolproof and need not work. On the other hand, it usually

does, and when it does not, things 
an get very subtle.

7

We will show next a simple approa
h that

works in �xing some problems like the one we have.

7

In fa
t, there are some open resear
h problems that have to do with failures of this type, albeit in 
ontexts quite

a bit more 
ompli
ated than this one.
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 Dipole Fixed Point: x
t
 = 2xy/n, y

t
 = y2 - x 2, n = 5.

Figure 3.1: Phase plane portrait for the Dipole Fixed Point system (1.1) for n = 5. The qualitative

details of the portrait do not 
hange in the range 2 < n, but di�er from those that apply in the range

0 < n < 2 (see �gure 1.1.)

What happens for n = 2 must be, in same sense, a limit of the behavior for n < 2, as n! 2.

Now, look at (3.5) in this limit: it is 
lear that the behavior must be
ome 
loser and 
loser to that

of a straight line (sin
e the exponent approa
hes 1), at least lo
ally (i.e.: near any �xed value of

x). On the other hand, it would be in
orre
t to assume that this implies that the orbits be
ome

straight in this limit, be
ause this ignores that fa
t that � will depend on n too. In fa
t, we know

that the limit behavior is not a straight line, but this argument shows that is must be very, very


lose to one. Thus we propose to seek solutions of the form

y = �x ; (4.1)
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where � = �(x) is not a 
onstant, but behaves very mu
h like one as x! 0. By this we mean that,

when we 
al
ulate the derivative

dy

dx

= � +

d�

dx

x ; (4.2)

we 
an negle
t the se
ond term. That is

��

d�

dx

x ; as x! 0 : (4.3)

We also expe
t that �!1 as x! 0; sin
e we know that the orbits must approa
h the 
riti
al

point verti
ally.

Noti
e that this proposal provides a very 
lean explanation of how it is that the step

from (3.3) to (3.5), via (3.4), fails (and provides a way out): In writing (3.4) some small

terms are negle
ted, and what is left is (when writing the solution in the form (4.1)) is �. Comparing

this with (4.2), we see that the negle
ted terms are, pre
isely, those that make � non-
onstant. Thus,

by negle
ting them we end predi
ting that � is a 
onstant,

8

whi
h leads to all the 
ontradi
tions

pointed out in se
tion 3.

What we need to do, therefore, is 
al
ulate the leading order 
orre
tion

9

to the right hand side

in (3.4), and equate it to the se
ond term in (4.2). This will then give an equation for

d�

dx

, whi
h

we must then solve. If the solution is then 
onsistent with the assumption above in (4.3), we will

have our answer and the mystery will be solved.

10

We now implement the pro
ess des
ribed in the prior paragraph. The leading order 
orre
tion

to the right hand side in (3.4) is (re
all n = 2 now)


orre
tion = �

x

y

= �

1

�

; (4.4)

whi
h is small, sin
e � is large for 0 < x� 1. Thus the equation for � is:

x

d�

dx

= �

1

�

=) � =

q


� 2 ln(x) ; (4.5)

where 
 is a 
onstant. It is easy to see that this is 
onsistent with (4.3).

8

That is, � = � in (3.5).

9

That is to say: plug (4.1) into equation (2.1) and then expand, using the fa
t that � is large.

10

Note that this answer must be subje
t to the same type of basi
 
he
ks we went through in (
), (d), and (e) of

se
tion 3, before we a

epted (3.5) in the 
ase 0 < n < 2.
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Remark 4.1 It turns out that this problem is so simple that the \leading order" 
orre
tion | i.e.:

�

�1

�

�

above in (4.4) | is everything! Thus (4.1 { 4.5) in fa
t provides not just an approximation

near the 
riti
al point, but an exa
t solution! It follows that we do not need to 
he
k for any

\
onsisten
ies" to make sure that the \approximation" 
an be trusted (in the manner of (
), (d),

and (e) of se
tion 3.)

Of 
ourse, in more 
ompli
ated problems this will (generally) not happen, and expressions like

the one in (4.1) | with � given by (4.5) | will end up being just the �rst term in an asymptoti


approximation for the orbit shape.

At this point you may wonder: what exa
tly is the \method" proposed here?

Well, as usual with these kind of things, there is no pre
ise re
ipe that 
an be given | just as there

is no pre
ise re
ipe that 
an be given to explain the \standard" methods. However, just as in the

standard methods one 
an give a vague | and rather short | list of things to do (e.g.: balan
e

terms and look for pairs that may dominate, therefore simplifying the problem

11

) we provide below a

list of hints as to what one 
an do when fa
ed with problems like the one we treat in this se
tion. In

the end, though, ea
h problem is its own thing and (at least with our present level of understanding)

the only way to learn how to do these things \well" is by painfully a
quired experien
e.

When fa
ed with a problem of this type, you may try this:

1. See if you 
an add a parameter to the equations (say: n), in su
h a way that the diÆ
ult

problem 
orresponds to some 
riti
al value n = n




, and you 
an do the problem for n 6= n




.

In the example here n




= 2.

2. Look at the behavior of the solution for the \easier" problems as n! n




. This limit will,

almost 
ertainly, be singular. What you should then do is try to extra
t a fun
tional form

(by looking at these limits) with appropriate properties.

12

The aim is to \guess" what the

\right" form to try for the solution is, by looking at the behavior of the solutions of the nearby

problems on ea
h side of n




(these ought to \sandwi
h" the right behavior between them.)

11

Books in asymptoti
 expansions deal with these and other ideas at length; see (for example) Bender, C. M., and

Orszag, S. A. (1978) Advan
ed Mathemati
al Methods for S
ientists and Engineers (M
Graw-Hill, New York.)

12

Sorry if this sounds very vague; it is very vague, but it is the best I 
an do!
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In the example studied here we had (� is a 
onstant):

y � � x

1��

; where � =

n




� n

2

; when n < n




= 2

and

y �

p

1� �

p

�

x ; where � =

n� n




2

; when n > n




= 2 :

In the �rst 
ase the limit behavior is �x, but it is a very non-uniform limit near x = 0 (see

what happens with the derivatives.) In the se
ond 
ase there is not even a limit.

The solutions for both 
ases, however, have the 
ommon form �x, where the bad behavior is

restri
ted to �. Thus we pi
ked this 
ommon form, and assumed properties for � \intermedi-

ate" between the behaviors on ea
h side: a 
onstant, but not quite one, and going to in�nity

as x! 0.

3. Alternatively, look at the solution

13

that fails for n = n




. This solution will satisfy an ap-

proximate form of the equations (where some small terms have been negle
ted), but will be

in
onsistent with the assumptions made in arriving to it | e.g.: the small terms end up not

being as small as assumed. The failure must o

ur be
ause the negle
ted small terms have

some important e�e
t. Therefore, try the following: assume a form of the solution equal to

the one that fails, but allow any free parameters in this solution to be \slow" fun
tions, rather

than 
onstants (this means: when taking derivatives, the terms involving derivatives of the

parameters will be higher order.

14

) Then use this \slow" dependen
e to eliminate the leading

order terms in the errors to the approximations that lead to the failed solution in the �rst

pla
e. If you are lu
ky, and 
lever enough, this might �x the problem.

In the example studied here, the failure o

urs for n = 2, when equation (3.4) be
omes

dy

dx

=

y

x

; with solution y = �x (� a 
onstant.)

This solution is in
onsistent with the assumption y � x used in deriving (3.4). Thus we took

this form, but made the free 
onstant parameter in the solution (�) a slow fun
tion of x, with

13

Given by \standard" te
hniques.

14

These fun
tions should also have properties (e.g.: large, small, ... in some limit) that make the assumed form


onsistent with the approximations that lead to the equations they solve.
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the additional property �� 1 as x! 0 (so that y � x still applies.) This then works, in this


ase so well that it gives an exa
t solution.

The three hints outlined above will work straightforwardly for relatively simple problems, both in

ODE's and PDE's. Beyond that . . .

5 Exa
t solution of the orbit equation.

Equation (2.1) is simple enough that one 
an solve it exa
tly (for all values of n.) We 
an then

use this exa
t solution to verify that everything done earlier (using approximate arguments) is

absolutely 
orre
t. This is not a luxury one 
an a�ord too often; generally exa
t solutions are not

available and rigorous arguments are either too expensive or impossible | thus, the only tools one

is left with are numeri
al 
omputations, approximate analysis, and experimental observations.

15

Let us now solve (2.1). Multiply both sides of the equation by 2y and integrate. This yields a linear

equation in y

2

, namely:

dy

2

dx

�

n

x

y

2

= �nx :

Now multiply the equation by x

�n

, and integrate again, to obtain (assume x > 0):

dy

2

x

�n

dx

= �nx

1�n

:

From this the following solutions follow:

� Case 0 < n < 2.

y

2

= 2Rx

n

�

n

2� n

x

2

; for 0 � x �

 

2R(2� n)

n

!

1

2� n

; (5.1)

where R > 0 is a 
onstant. For n = 1 these are 
ir
les of radius R, 
entered at (x; y) = (R; 0).

� Case n = 2.

y

2

= (2 ln(x

0

)� 2 ln(x)) x

2

; for 0 � x � x

0

; (5.2)

where x

0

> 0 is a 
onstant.

15

For 2-D problems all sorts of theoreti
ian luxuries are available. But real problems are seldom this simple.
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� Case n > 2.

y

2

= �Cx

n

+

n

n� 2

x

2

; for 0 � x �

 

n

(n� 2)C

!

1

n� 2

; (5.3)

where C > 0 is a 
onstant (these are the orbits giving 
losed loops in �gure 3.1), or

y

2

= Cx

n

+

n

n� 2

x

2

; for 0 � x ; (5.4)

where C � 0 is a 
onstant (these are the orbits that diverge to in�nity in the se
tors around

the y-axis in �gure 3.1.)

6 Commented Bibliography.

Below I list a few books that I think might be of use to you.

1. Cole, J. D. (1968). Perturbation Methods in Applied Mathemati
s, Blaisdell, Waltham, Mass.

Very ni
e and 
on
ise book (unfortunately, out of print.) It introdu
es the fundamental


on
epts in asymptoti
 methods, using examples from appli
ations (
uid dynami
s, mostly.)

It aims at realisti
 s
ienti�
 problems, so it deals mostly with PDE's (not ODE's).

2. Bender, C. M., and Orszag, S. A. (1978). Advan
ed Mathemati
al Methods for S
ientists and

Engineers, M
Graw-Hill, New York.

This book has an extensive treatment of many of the ideas in asymptoti
 (and other) methods,

with many 
omparisons between the asymptoti
 approximations and numeri
al solutions. It

introdu
es the methods using simple examples, so it deals (mostly) with ODE's.

3. Coddington, E. A., and Levinson, N. (1955). Theory of Ordinary Di�erential Equations,

M
Graw-Hill, New York.

A rigorous treatment of the theory of ODE's, and a 
lassi
 for this. This book proves ev-

erything, but it does so with minimum use of jargon. It has several 
hapters dedi
ated to

asymptoti
 properties of ODE's, a 
omplete treatment of the Poin
ar�e Bendixson theorem,

and many other things. If you want hard 
ore proofs, without ex
uses or unne
essary jargon,

this is the pla
e to go. Of 
ourse, it is a bit old, and a lot of the new theory is not here |
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but you 
annot really appre
iate (or understand) any proof in the newer theory without this

ba
kground.

4. In
e, E. L. (1926). Ordinary Di�erential Equations, Longmans, Green, London.

There is also a Dover edition!

Old, perhaps, but very good. A hard 
ore exposition of the 
lassi
al theory of ODE's.

THE END.


