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Abstrat

In this notes we analyze an example of a linearly degenerate ritial point, illustrating some

of the standard tehniques one must use when dealing with nonlinear systems near a ritial

point. For a partiular value of a parameter, these tehniques fail and we show how to get

around them. For ODE's the situations where standard approximations fail are reasonably

well understood, but this is not the ase for more general systems. Thus we do the exposition

here trying to emphasize generi ideas and tehniques, useful beyond the ontext of ODE's.

�
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1 Introdution.

Here we onsider some subtle issues that arise while analyzing the behavior of the orbits near the

(single, thus isolated) ritial point at the origin of the Dipole Fixed Point system (see problem

6.1.9 in Strogatz book)

dx

dt

=

2

n

xy ; and

dy

dt

= y

2

� x

2

; (1.1)

where 0 < n � 2 is a onstant. Our objetive is to illustrate how one an analyze the behavior

of the orbits near this linearly degenerate ritial point and arrive at a qualitatively

1

orret

desription of the phase portrait. We will use for this \standard" asymptoti analysis tehniques.

The ase n = 2 is of partiular interest, beause then the standard tehniques fail, and some

extra triks are needed to make things work.

Just so we know what we are dealing with, a omputer made phase portrait for the system

2

(ase n = 1) is shown in �gure 1.1. Other values of 0 < n � 2 give qualitatively similar pitures.

However, for n > 2 there is a qualitative hange in the piture. We will not deal with the ase n > 2

here, but the analysis will show how it is that things hange then. The threshold between the two

behaviors is preisely the triky ase where \standard" asymptoti analysis tehniques do not work.

2 Qualitative analysis.

We begin by searhing for invariant urves, symmetries, nulllines, and general \orbit shape" prop-

erties for the system in (1.1).

A. Symmetries. The equations in (1.1) are invariant under the transformations:

3

A1. x �! �x

A2. y �! �y and t �! �t

A1 andA2 show thatwe need only study the behav-

ior of the equation in the quadrant x � 0, y � 0.

A3. x �! ax, y �! at, and t �! t=a, for any onstant a > 0.

1

With quantitative extra information.

2

The analysis will, however, proeed in a form that is independent of the information shown in this piture.

3

Notie that these types of invarianes our as a rule when analyzing the \leading order" behavior near degenerate

ritial points; beause suh systems tend to have homogeneous simple strutures.
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t
 = 2xy/n, y

t
 = y2 - x 2, n = 1.

Figure 1.1: Phase plane portrait for the Dipole Fixed Point system (1.1) for n = 1. The qualitative

details of the portrait do not hange in the range 0 < n � 2. However, for n > 2 di�erenes arise.

The last set of symmetries (A3) shows that we need only ompute a few orbits, sine one we

have one orbit, we an get others by expanding/ontrating it by arbitrary fators

a > 0. Note that we say \a few" here, not \one"! This is beause the expansion/ontrations

of a single orbit need not �ll up the whole phase spae, but just some fration of it. A

partiularly extreme example of this an be seen in �gure 1.1, where the orbit given by y > 0

and x � 0 simply gives bak itself upon expansion. On the other hand, we will show that

any of the orbits on x > 0 (or x < 0) gives all the orbits on x > 0 (respetively, x < 0) upon

expansion/ontration.

4

Atually: this is, preisely, the property that is lost for n > 2!

Note: (A2) shows that this system is reversible. On the other hand, beause there are open

4

It even gives the speial orbits on the y-axis by taking a =1, and the ritial point by taking a = 0.
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sets of orbits that are attrated by the ritial point (we will show this later), the system is not

onservative. In fat, this is an example of a reversible, non-onservative system with a minimum

number of ritial points.

B. Simple invariant urves. The y-axis (x � 0) is an invariant line. Along it the ow is

in the diretion of inreasing y, with vanishing derivative at the origin only. This invariant

line is learly seen in �gure 1.1.

For n > 2, two further (simple) invariant lines are: y = �

p

n

p

n� 2

x.

Whenever a one parameter family of symmetries exist (suh as (A3)), you should look for

invariant urves that are invariant under the whole family. In this ase, this means looking

for straight lines (whih is what we just did.)

C. Nulllines. The nulllines are given by

C1. The x-axis (y � 0), where _x = 0 (and, for x 6= 0, _y < 0.)

C2. The y-axis (x � 0), where _x = 0 (and, for y 6= 0, _y > 0.)

C3. The lines y = �x, where _y = 0. In the �rst quadrant we also have _x > 0 here.

D. Orbit shape properties. In the �rst quadrant (from (A) above, it is enough to study

this x > 0 and y > 0 quadrant only), onsider the equation for the orbits

dy

dx

=

n(y

2

� x

2

)

2xy

=

n

2

 

y

x

�

x

y

!

: (2.1)

A simple omputation then shows that:

d

2

y

dx

2

=

n

2

 

1

x

+

x

y

2

!

dy

dx

�

n

2

 

y

x

2

+

1

y

!

= �

n

4x

2

y

3

�

(2� n)y

2

+ nx

2

� �

y

2

+ x

2

�

< 0 : (2.2)

This shows that the orbits are (stritly) onave in this quadrant. Note, however, that

the inequality breaks down for n > 2. Then the orbits are onave for (n� 2)y

2

< nx

2

and

onvex for (n� 2)y

2

> nx

2

.
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All this information an now be put together, to obtain a �rst approximation to what the

phase portrait must look like, as follows:

I. Region 0 < y < x ( _y < 0 and _x > 0.) The orbits enter this region (horizontally)

aross the nullline y = x, bend down, and must eventually exit the region (vertially) aross

the nullline y = 0. It should be lear that, one we show that one orbit exhibiting this behav-

ior ours, then all the others will be expansion/ontrations of this one and, in partiular, of

eah other (see (A3).)

The only point that must be lari�ed here is why we say above that the orbit \must eventually

exit the region"? Why are we exluding the possibility that y will derease, and x will inrease,

but in suh a fashion that the orbit diverges to in�nity, without ever making it to the x-axis?

The answer to this is very simple: this would require the orbit to have an inetion point,

whih it annot have.

5

II. Region 0 < x < y ( _y > 0 and _x > 0.) Considering the ow bakwards in time, we

see that all the orbits that exit this region (horizontally, entering region I) aross the nullline

y = x, must originate at the ritial point.

However: do all the orbits that originate at the ritial point, exit this region aross the

nullline y = x? Or is it possible for suh an orbit to reah in�nity without ever leaving this

region? | in fat, this is preisely what happens when n > 2, when all the orbits in the region

p

n� 2 y >

p

nx do this. Figure 1.1 seems to indiate that this is not the ase, but: how an

be sure that a very thin penil of orbits hugging the y-axis does not exist?

In setion 3 we will show that all the orbits leave the ritial point with in�nite

slope (i.e.: vertially). Consider now any orbit that exits this region through the nullline

y = x, and (we know) starts vertially at the ritial point. We also know that all the ex-

pansions/ontrations of this orbit must also be orbits (see (A)), and it should be lear that

these will �ll up this region ompletely (the fat that the orbit starts vertially is ruial for

this.) But then there is no spae left for the alternative type of orbits suggested in the prior

paragraph, thus there are none. This lari�es the point in the prior paragraph.

5

See (D) | notie that the orbits are always onave in this region, for all values of n > 0.
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III. Conlusion. With this information, and using the symmetries in (A), we an draw a

qualitatively orret phase plane portrait, whih will look as the one shown in �gure 1.1. It

should be lear from this �gure that:

The index of the ritial point is I = 2.

3 Quantitative analysis, and failure for n = 2.

Our aim in this setion is to get some quantitative information about the orbits near the ritial

point. In partiular, exatly how they approah or leave it.

Our approah below is \semi-rigorous", in the sense that we try to justify all the steps as

best as possible, without going to \extremes" (whatever this means). 100% mathematial rigor in

alulations like the ones that follow is possible in simple examples like the one we are doing | and

not even very hard | but quikly beomes prohibitive as the omplexity of the problems inreases.

But the type of tehniques and way of thinking that we follow below remain useful well beyond the

point where full mathematial rigor is urrently ahievable. Thus, provided one is willing to pay

the prie of not having the \absolute" ertainty that full mathematial rigor gives, large gains an

be made | while maintaining a \reasonable" level of ertainty. This point of view is pretty lose

to the one adopted by Strogatz in his book.

We begin by showing the result announed (and used) towards the end of setion 2, namely: that

all the orbits leave/approah the ritial point vertially. As before,

we restrit out attention to the �rst quadrant, and assume x; y > 0.

a. All the orbits must have a tangent limit diretion as they approah the origin. This follows

easily from the onavity of the orbits (see (D)): as t! �1, the slope

dy

dx

inreases mono-

tonially. Thus, it must have a well de�ned limit (whih may be 1; in fat, the aim here is

to show that this limit is 1.)

b. Suppose that there is an orbit that does not approah the ritial point vertially. Then, the

result in item (a) shows that we should be able to write

y � �x ; for 0 < x� x ; (3.1)
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where 1 � � <1 is a onstant,

6

in fat � = lim

x!0

dy

dx

. Substitution of this into equation (2.1)

then yields (upon taking the limit x! 0)

� =

n

2

�

��

1

�

�

() (n� 2)�

2

= n ; (3.2)

whih has no solution for 0 < n � 2! It follows that an orbit approahing the ritial point at

a �nite slope annot our | whih is preisely what we wanted to show.

We now beome more ambitious and ask the question: How exatly do the orbits leave the

ritial point? | that is to say: What is the leading order behavior in their shape

for 0 < x << 1? As we will show later (see remark 3.2), the answer to this question is useful in

alulating the rate (in time) at whih the solutions approah the ritial point.

To answer this last question we proeed as follows: We know that the orbits have in�nite slope near

the ritial point, thus we an write

y � x for 0 < x� 1 : (3.3)

Using this, we should be able to replae equation (2.1) by the approximation

dy

dx

�

n y

2

2xy

=

ny

2x

: (3.4)

This yields

y � �x

n=2

; (3.5)

where � is a onstant. This last step is not rigorous, by a long shot, and we must be a bit areful

before aepting it. Equation (3.4) is orret (the negleted terms are smaller than the ones kept),

but it is not lear that (upon integration) the negleted terms will not end up having a signi�ant

ontribution to the solution of the equation.

Thus before we aept equation (3.5) we must make some basi heks (these sort of

heks are important, you must always try to do as muh as it is reasonable and you an do along

these lines), suh as:

6

We know that � � 1 beause the orbit must leave the ritial point staying above the line y = x.
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. Consisteny with known fats. For example:

1. For 0 < n < 2, (3.5) is onsistent with (3.3).

2. For n > 2, (3.5) is not onsistent with (3.3). However, our proof that the orbits approah

the ritial point vertially (whih is what (3.3) is based on) does not apply for n > 2.

In fat, for n > 2, (3.2) provides a very de�nite (neither in�nite nor zero) diretion of

approah | whih happens to agree with the invariant lines mentioned in (B) earlier.

So, there is no ontradition (see remark 3.1 below for a brief desription of what the

situation is when n > 2.)

3. For n = 2, (3.5) is not onsistent with (3.3). Sine our proof that the orbits approah the

ritial point vertially (whih implies (3.3)) does apply for n = 2, we have a problem

here, a rather triky one, whih we will address in setion 4 below.

d. Self-onsisteny (plug in the proposed approximation into the full equation and hek

that the negleted terms are indeed small). In this ase the negleted term in the equation is

nx

2y

, whih has size (using (3.5))

nx

2y

= O(x

(2�n)=2

) ; while

dy

dx

=

ny

2x

= O(x

(n�2)=2

) :

For the retained terms to be smaller than the negleted terms, we need (2� n)=2 > (n� 2)=2,

whih is true only for n < 2. Thus (3.5) is self-onsistent only for n < 2.

e. Estimate the error. That is, write the solution as

y = �x

n=2

+ y

1

;

and assume y

1

� �x

n=2

. Then use this to get an approximate equation for y

1

, solve it, and

hek that, indeed: y

1

� �x

n=2

.

In the ase 0 < n < 2 (the only one worth doing this for, sine the other ases have already

failed the two prior tests) one an do not only this, but repeat the proess over and over again,

obtaining at eah stage higher order asymptoti approximations to the solution. That is, an

asymptoti series of the form

y = �x

n=2

+ y

1

+ y

2

+ y

3

+ : : : ; (3.6)

where y

n+1

� y

n

, an be systematially omputed.
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Remark 3.1 What happens when n > 2.

The same methods that work for 0 < n < 2 an be used to study this ase (but a bit more work

is needed). The main di�erene in the phase portrait ours beause all the orbits (exept for the

speial ones along the y-axis) approah the ritial point along the lines

p

n� 2 y = �

p

n x.

For

p

n� 2 jyj < �

p

n jxj, the orbits look rather similar to the orbits in the ase 0 < n < 2, that

is to say: losed loops starting and ending at the ritial point, exept that they approah the ritial

point along the lines

p

n� 2 y = �

p

n x, not the y-axis.

For

p

n� 2 jyj > �

p

n jxj, the orbits approah the ritial point at one end (along the lines

p

n� 2 y = �

p

n x) and in�nity at the other (ending parallel to the y-axis there). In between their

slopes vary steadily (no inetion points) from one limit to the other.

Figure 3.1 shows a typial phase plane portrait for the n > 2 ase. From the �gure it should be

lear that we still have for the index: I = 2.

Remark 3.2 Rate of approah to the ritial point (0 < n < 2.)

Substituting (3.5) into (1.1), we obtain (near the ritial point, where both x and y are small)

dx

dt

�

2�

n

x

(n+2)=2

; and

dy

dt

� y

2

;

where (in the seond equation) we simply used the fat that y � x. Thus

x = O

 

1

(�t)

2=n

!

and y = O

�

1

t

�

; as t! �1 :

4 Resolution of the diÆulty in the ase n = 2.

Again we restrit out attention to the �rst quadrant, and assume x; y > 0.

The results of setion 3 are quite ontraditory, when it omes to the ase when n = 2. On the

one hand, we showed that (3.3) must apply. But, on the other hand, when we implemented the

onsequenes of this result (in (3.4)) we arrived at the ontraditory result in (3.5). As we pointed

out, the step from (3.4) to (3.5), is not foolproof and need not work. On the other hand, it usually

does, and when it does not, things an get very subtle.

7

We will show next a simple approah that

works in �xing some problems like the one we have.

7

In fat, there are some open researh problems that have to do with failures of this type, albeit in ontexts quite

a bit more ompliated than this one.
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Figure 3.1: Phase plane portrait for the Dipole Fixed Point system (1.1) for n = 5. The qualitative

details of the portrait do not hange in the range 2 < n, but di�er from those that apply in the range

0 < n < 2 (see �gure 1.1.)

What happens for n = 2 must be, in same sense, a limit of the behavior for n < 2, as n! 2.

Now, look at (3.5) in this limit: it is lear that the behavior must beome loser and loser to that

of a straight line (sine the exponent approahes 1), at least loally (i.e.: near any �xed value of

x). On the other hand, it would be inorret to assume that this implies that the orbits beome

straight in this limit, beause this ignores that fat that � will depend on n too. In fat, we know

that the limit behavior is not a straight line, but this argument shows that is must be very, very

lose to one. Thus we propose to seek solutions of the form

y = �x ; (4.1)
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where � = �(x) is not a onstant, but behaves very muh like one as x! 0. By this we mean that,

when we alulate the derivative

dy

dx

= � +

d�

dx

x ; (4.2)

we an neglet the seond term. That is

��

d�

dx

x ; as x! 0 : (4.3)

We also expet that �!1 as x! 0; sine we know that the orbits must approah the ritial

point vertially.

Notie that this proposal provides a very lean explanation of how it is that the step

from (3.3) to (3.5), via (3.4), fails (and provides a way out): In writing (3.4) some small

terms are negleted, and what is left is (when writing the solution in the form (4.1)) is �. Comparing

this with (4.2), we see that the negleted terms are, preisely, those that make � non-onstant. Thus,

by negleting them we end prediting that � is a onstant,

8

whih leads to all the ontraditions

pointed out in setion 3.

What we need to do, therefore, is alulate the leading order orretion

9

to the right hand side

in (3.4), and equate it to the seond term in (4.2). This will then give an equation for

d�

dx

, whih

we must then solve. If the solution is then onsistent with the assumption above in (4.3), we will

have our answer and the mystery will be solved.

10

We now implement the proess desribed in the prior paragraph. The leading order orretion

to the right hand side in (3.4) is (reall n = 2 now)

orretion = �

x

y

= �

1

�

; (4.4)

whih is small, sine � is large for 0 < x� 1. Thus the equation for � is:

x

d�

dx

= �

1

�

=) � =

q

� 2 ln(x) ; (4.5)

where  is a onstant. It is easy to see that this is onsistent with (4.3).

8

That is, � = � in (3.5).

9

That is to say: plug (4.1) into equation (2.1) and then expand, using the fat that � is large.

10

Note that this answer must be subjet to the same type of basi heks we went through in (), (d), and (e) of

setion 3, before we aepted (3.5) in the ase 0 < n < 2.
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Remark 4.1 It turns out that this problem is so simple that the \leading order" orretion | i.e.:

�

�1

�

�

above in (4.4) | is everything! Thus (4.1 { 4.5) in fat provides not just an approximation

near the ritial point, but an exat solution! It follows that we do not need to hek for any

\onsistenies" to make sure that the \approximation" an be trusted (in the manner of (), (d),

and (e) of setion 3.)

Of ourse, in more ompliated problems this will (generally) not happen, and expressions like

the one in (4.1) | with � given by (4.5) | will end up being just the �rst term in an asymptoti

approximation for the orbit shape.

At this point you may wonder: what exatly is the \method" proposed here?

Well, as usual with these kind of things, there is no preise reipe that an be given | just as there

is no preise reipe that an be given to explain the \standard" methods. However, just as in the

standard methods one an give a vague | and rather short | list of things to do (e.g.: balane

terms and look for pairs that may dominate, therefore simplifying the problem

11

) we provide below a

list of hints as to what one an do when faed with problems like the one we treat in this setion. In

the end, though, eah problem is its own thing and (at least with our present level of understanding)

the only way to learn how to do these things \well" is by painfully aquired experiene.

When faed with a problem of this type, you may try this:

1. See if you an add a parameter to the equations (say: n), in suh a way that the diÆult

problem orresponds to some ritial value n = n



, and you an do the problem for n 6= n



.

In the example here n



= 2.

2. Look at the behavior of the solution for the \easier" problems as n! n



. This limit will,

almost ertainly, be singular. What you should then do is try to extrat a funtional form

(by looking at these limits) with appropriate properties.

12

The aim is to \guess" what the

\right" form to try for the solution is, by looking at the behavior of the solutions of the nearby

problems on eah side of n



(these ought to \sandwih" the right behavior between them.)

11

Books in asymptoti expansions deal with these and other ideas at length; see (for example) Bender, C. M., and

Orszag, S. A. (1978) Advaned Mathematial Methods for Sientists and Engineers (MGraw-Hill, New York.)

12

Sorry if this sounds very vague; it is very vague, but it is the best I an do!
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In the example studied here we had (� is a onstant):

y � � x

1��

; where � =

n



� n

2

; when n < n



= 2

and

y �

p

1� �

p

�

x ; where � =

n� n



2

; when n > n



= 2 :

In the �rst ase the limit behavior is �x, but it is a very non-uniform limit near x = 0 (see

what happens with the derivatives.) In the seond ase there is not even a limit.

The solutions for both ases, however, have the ommon form �x, where the bad behavior is

restrited to �. Thus we piked this ommon form, and assumed properties for � \intermedi-

ate" between the behaviors on eah side: a onstant, but not quite one, and going to in�nity

as x! 0.

3. Alternatively, look at the solution

13

that fails for n = n



. This solution will satisfy an ap-

proximate form of the equations (where some small terms have been negleted), but will be

inonsistent with the assumptions made in arriving to it | e.g.: the small terms end up not

being as small as assumed. The failure must our beause the negleted small terms have

some important e�et. Therefore, try the following: assume a form of the solution equal to

the one that fails, but allow any free parameters in this solution to be \slow" funtions, rather

than onstants (this means: when taking derivatives, the terms involving derivatives of the

parameters will be higher order.

14

) Then use this \slow" dependene to eliminate the leading

order terms in the errors to the approximations that lead to the failed solution in the �rst

plae. If you are luky, and lever enough, this might �x the problem.

In the example studied here, the failure ours for n = 2, when equation (3.4) beomes

dy

dx

=

y

x

; with solution y = �x (� a onstant.)

This solution is inonsistent with the assumption y � x used in deriving (3.4). Thus we took

this form, but made the free onstant parameter in the solution (�) a slow funtion of x, with

13

Given by \standard" tehniques.

14

These funtions should also have properties (e.g.: large, small, ... in some limit) that make the assumed form

onsistent with the approximations that lead to the equations they solve.
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the additional property �� 1 as x! 0 (so that y � x still applies.) This then works, in this

ase so well that it gives an exat solution.

The three hints outlined above will work straightforwardly for relatively simple problems, both in

ODE's and PDE's. Beyond that . . .

5 Exat solution of the orbit equation.

Equation (2.1) is simple enough that one an solve it exatly (for all values of n.) We an then

use this exat solution to verify that everything done earlier (using approximate arguments) is

absolutely orret. This is not a luxury one an a�ord too often; generally exat solutions are not

available and rigorous arguments are either too expensive or impossible | thus, the only tools one

is left with are numerial omputations, approximate analysis, and experimental observations.

15

Let us now solve (2.1). Multiply both sides of the equation by 2y and integrate. This yields a linear

equation in y

2

, namely:

dy

2

dx

�

n

x

y

2

= �nx :

Now multiply the equation by x

�n

, and integrate again, to obtain (assume x > 0):

dy

2

x

�n

dx

= �nx

1�n

:

From this the following solutions follow:

� Case 0 < n < 2.

y

2

= 2Rx

n

�

n

2� n

x

2

; for 0 � x �

 

2R(2� n)

n

!

1

2� n

; (5.1)

where R > 0 is a onstant. For n = 1 these are irles of radius R, entered at (x; y) = (R; 0).

� Case n = 2.

y

2

= (2 ln(x

0

)� 2 ln(x)) x

2

; for 0 � x � x

0

; (5.2)

where x

0

> 0 is a onstant.

15

For 2-D problems all sorts of theoretiian luxuries are available. But real problems are seldom this simple.
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� Case n > 2.

y

2

= �Cx

n

+

n

n� 2

x

2

; for 0 � x �

 

n

(n� 2)C

!

1

n� 2

; (5.3)

where C > 0 is a onstant (these are the orbits giving losed loops in �gure 3.1), or

y

2

= Cx

n

+

n

n� 2

x

2

; for 0 � x ; (5.4)

where C � 0 is a onstant (these are the orbits that diverge to in�nity in the setors around

the y-axis in �gure 3.1.)

6 Commented Bibliography.

Below I list a few books that I think might be of use to you.

1. Cole, J. D. (1968). Perturbation Methods in Applied Mathematis, Blaisdell, Waltham, Mass.

Very nie and onise book (unfortunately, out of print.) It introdues the fundamental

onepts in asymptoti methods, using examples from appliations (uid dynamis, mostly.)

It aims at realisti sienti� problems, so it deals mostly with PDE's (not ODE's).

2. Bender, C. M., and Orszag, S. A. (1978). Advaned Mathematial Methods for Sientists and

Engineers, MGraw-Hill, New York.

This book has an extensive treatment of many of the ideas in asymptoti (and other) methods,

with many omparisons between the asymptoti approximations and numerial solutions. It

introdues the methods using simple examples, so it deals (mostly) with ODE's.

3. Coddington, E. A., and Levinson, N. (1955). Theory of Ordinary Di�erential Equations,

MGraw-Hill, New York.

A rigorous treatment of the theory of ODE's, and a lassi for this. This book proves ev-

erything, but it does so with minimum use of jargon. It has several hapters dediated to

asymptoti properties of ODE's, a omplete treatment of the Poinar�e Bendixson theorem,

and many other things. If you want hard ore proofs, without exuses or unneessary jargon,

this is the plae to go. Of ourse, it is a bit old, and a lot of the new theory is not here |
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but you annot really appreiate (or understand) any proof in the newer theory without this

bakground.

4. Ine, E. L. (1926). Ordinary Di�erential Equations, Longmans, Green, London.

There is also a Dover edition!

Old, perhaps, but very good. A hard ore exposition of the lassial theory of ODE's.

THE END.


