
Example 1: The weakly-damped oscillator

Consider the problem
ẍ+ 2εẋ+ x = 0, (1)

with initial conditions x(0) = 0 and ẋ(0) = 1. We note that there are two timescales: the oscillatory
O(1) timescale and the slow O(1/ε) damping timescale. We define

τ = t, T = εt,

and express the solution x(t, ε) as

x(t, ε) = x0(τ, T ) + εx1(τ, T ) +O(ε2) ∀ε > 0. (2)

Note that τ is the fast timescale and t is the slow timescale. By the chain rule, derivatives are
transformed as
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Substituting the expansions (2)–(3) into (1) gives[
∂ττx0 + x0

]
+ ε
[
∂ττx1 + x1 + 2∂τTx0 + 2∂τx0

]
= O(ε2), ∀ε > 0 (4)

and the initial conditions give (at τ = T = 0)

0 = x0 + εx1 +O(ε2), ∀ε > 0,

1 = ∂τx0 + ε[∂Tx0 + ∂τx1] +O(ε2), ∀ε > 0.

It may appear that we have made the problem more complicated by introducing this additional
timescale, but we have included the flexibility required to avoid the issues created by secular terms
in the regular perturbation theory.

By grouping together powers of ε in (4), to leading order (i.e. O(1) terms), we have

∂ττx0 + x0 = 0, x0(0, 0) = 0, ∂τx0(0, 0) = 1.

We may solve this partial differential equation to obtain

x0(τ, T ) = A(T ) sin τ +B(T ) cos τ, (5)

where A(T ) and B(T ) are functions to be determined. The initial conditions require that A(0) = 1
and B(0) = 0.

Moving onto the O(ε) terms, we obtain

∂ττx1 + x1 = −2
(
∂τTx0 + ∂τx0

)
, x1(0, 0) = 0, ∂τx1(0, 0) = −∂Tx0(0, 0).

Using the previously found solution x0(τ, T ) given in equation (5), the partial differential equation
becomes

∂ττx1 + x1 = −2
(
A′(T ) + A(T )

)
cos τ + 2

(
B′(T ) +B(T )

)
sin τ.

We note that this equation has secular terms, which would give undesirable solutions like τ sin τ ,
etc. But here lies the beauty of the method of multiple scales: we are free to choose A(T ) and B(T ),
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so we define A(T ) and B(T ) so that the coefficients of the secular terms are zero. Specifically, we
have

A′(T ) + A(T ) = 0, B′(T ) +B(T ) = 0,

where we recall that A(0) = 1 and B(0) = 0. We then solve for A and B to obtain A(T ) = e−T

and B = 0 for all T . Having used the secular terms at O(ε), we can now go back to (5) and write
down the O(1) solution:

x0(τ, T ) = e−T sin τ.

Hence, we have x(t, ε) = e−εt sin t + O(ε), which yields the correct behavior for all time (unlike
the regular perturbation method, which was only valid for εt � 1). We note that to improve the
accuracy of the approximation, we could solve for x1(τ, T ) by finding the secular terms that would
appear in the inhomogeneity of the partial differential equation for x2.

Example 2: The van der Pol oscillator

We now consider the limit cycle of the van der Pol oscillator ẍ + ε(x2 − 1)ẋ + x = 0 with ε � 1.
As we are considering the long-time behavior, we don’t need to worry about initial conditions,
but the method still works when we include initial values (see the handwritten notes). Using the
expansions (2)–(3) and grouping together powers of ε, we obtain

O(1) : ∂ττx0 + x0 = 0,

O(ε) : ∂ττx1 + x1 = −2∂τTx0 − (x20 − 1)∂τx0.

It’s convenient here to write the solution x0(τ, T ) in terms of the complex amplitude A(T ) ∈ C,
namely

x0(τ, T ) = A(T )eiτ + Ā(T )e−iτ ,

where the complex conjugate Ā ensures that x0 is real.
At O(ε), we obtain

∂ττx1 + x1 = −2i
(
A′eiτ − Ā′e−iτ

)
− i
(
A2e2iτ + 2|A|2 + Ā2e−2iτ − 1

)(
Aeiτ − Āe−iτ

)
=

{
ieiτ
[
− 2A′ − A(|A|2 − 1)

]
+ c.c.

}
+ non-secular terms,

where c.c. denotes the complex conjugate of the preceding term. To remove secular terms, we thus
require A(T ) to satisfy

2A′ = A− A|A|2. (6)

This equation is known as the Stuart-Landau equation. To make sense of the complex amplitude, we
express A in complex polar form, namely A(T ) = r(T )eiφ(T ) for real φ and r > 0. By substituting
into (6) and considering real and imaginary parts, we obtain the system of differential equations

2r′ = r − r3,
φ′ = 0.

A stable fixed point of the system is r = 1 and φ = φ0 (a constant). We then have

x0(τ, T ) = [ei(τ+φ0) + e−i(τ+φ0)] = 2 cos(τ + φ0).

As x(t, ε) = 2 cos(t+ φ0) +O(ε), the limit cycle has approximate period 2π and amplitude 2.
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