Nonlinear dynamical systems

Matt Durey

October 3, 2019

Consider the following nonlinear coupled system, where $x_1(t)$ and $x_2(t)$ evolve according to

$$\dot{x}_1 = f_1(x_1, x_2), \qquad \dot{x}_2 = f_2(x_1, x_2),$$

for given functions f_1 and f_2 , and also given initial conditions for x_1 and x_2 . By defining the vector $\boldsymbol{x}(t) = (x_1(t), x_2(t))^T$ and the function $\boldsymbol{F} = (f_1, f_2)^T$, this system may be recast in the form $\dot{\boldsymbol{x}} = \boldsymbol{F}(\boldsymbol{x})$ with some initial condition $\boldsymbol{x}(0) = \boldsymbol{x}_0$. Note that this form is the nonlinear version of $\dot{\boldsymbol{x}} = \boldsymbol{A}\boldsymbol{x}$, where \boldsymbol{A} is a matrix.

Existence and uniqueness theorem (for n dimensions)

Consider the initial value problem $\dot{\boldsymbol{x}} = \boldsymbol{F}(\boldsymbol{x})$, $\boldsymbol{x}(0) = \boldsymbol{x}_0$. Suppose that \boldsymbol{F} is continuous and all its partial derivatives $\partial \boldsymbol{F}/\partial x_j$ (for j = 1, ..., n) are continuous in some open connected set $D \subseteq \mathbb{R}^n$. Then for $\boldsymbol{x}_0 \in D$, the initial value problem has solution $\boldsymbol{x}(t)$ on some time interval $t \in (-\tau, \tau)$ about t = 0, and the solution is unique.

Two important corollaries:

- 1. Two trajectories cannot intersect for a two-dimensional system, as otherwise the two trajectories would propagate from the same initial condition.
- 2. If a trajectory forms a closed curve C then any other trajectory that is within C remains within C forever.

Numerical solution

The numerical methods for evolving scalar systems all extend to vector systems! For a time step h > 0, times $t_n = nh$ and corresponding numerical solution $\boldsymbol{x}_n \approx \boldsymbol{x}(t_n)$ (where \boldsymbol{x}_0 is the initial condition), the fourth-order Runge-Kutta method is

$$m{x}_{n+1} = m{x}_n + rac{1}{6} ig(m{k}_1 + 2m{k}_2 + 2m{k}_3 + m{k}_4 ig),$$

where between each time step, the vectors k_i are defined as

$$\begin{aligned} \boldsymbol{k}_{1} &= h\boldsymbol{F}\left(\boldsymbol{x}_{n}\right), \\ \boldsymbol{k}_{2} &= h\boldsymbol{F}\left(\boldsymbol{x}_{n} + \boldsymbol{k}_{1}/2\right), \\ \boldsymbol{k}_{3} &= h\boldsymbol{F}\left(\boldsymbol{x}_{n} + \boldsymbol{k}_{2}/2\right), \\ \boldsymbol{k}_{4} &= h\boldsymbol{F}\left(\boldsymbol{x}_{n} + \boldsymbol{k}_{3}\right). \end{aligned}$$

For Problem Set 4, you will need to write code for the fourth-order Runge-Kutta method in twodimensions. The one-dimensional version of the code (in MATLAB) is uploaded on Stellar, which may be of use!