Nonlinear dynamical systems

Matt Durey

October 3, 2019

Consider the following nonlinear coupled system, where $x_{1}(t)$ and $x_{2}(t)$ evolve according to

$$
\dot{x}_{1}=f_{1}\left(x_{1}, x_{2}\right), \quad \dot{x}_{2}=f_{2}\left(x_{1}, x_{2}\right),
$$

for given functions f_{1} and f_{2}, and also given initial conditions for x_{1} and x_{2}. By defining the vector $\boldsymbol{x}(t)=\left(x_{1}(t), x_{2}(t)\right)^{T}$ and the function $\boldsymbol{F}=\left(f_{1}, f_{2}\right)^{T}$, this system may be recast in the form $\dot{\boldsymbol{x}}=\boldsymbol{F}(\boldsymbol{x})$ with some initial condition $\boldsymbol{x}(0)=\boldsymbol{x}_{0}$. Note that this form is the nonlinear version of $\dot{\boldsymbol{x}}=\boldsymbol{A} \boldsymbol{x}$, where \boldsymbol{A} is a matrix.

Existence and uniqueness theorem (for n dimensions)

Consider the initial value problem $\dot{\boldsymbol{x}}=\boldsymbol{F}(\boldsymbol{x}), \boldsymbol{x}(0)=\boldsymbol{x}_{0}$. Suppose that \boldsymbol{F} is continuous and all its partial derivatives $\partial \boldsymbol{F} / \partial x_{j}($ for $j=1, \ldots, n)$ are continuous in some open connected set $D \subseteq \mathbb{R}^{n}$. Then for $\boldsymbol{x}_{0} \in D$, the initial value problem has solution $\boldsymbol{x}(t)$ on some time interval $t \in(-\tau, \tau)$ about $t=0$, and the solution is unique.

Two important corollaries:

1. Two trajectories cannot intersect for a two-dimensional system, as otherwise the two trajectories would propagate from the same initial condition.
2. If a trajectory forms a closed curve C then any other trajectory that is within C remains within C forever.

Numerical solution

The numerical methods for evolving scalar systems all extend to vector systems! For a time step $h>0$, times $t_{n}=n h$ and corresponding numerical solution $\boldsymbol{x}_{n} \approx \boldsymbol{x}\left(t_{n}\right)$ (where \boldsymbol{x}_{0} is the initial condition), the fourth-order Runge-Kutta method is

$$
\boldsymbol{x}_{n+1}=\boldsymbol{x}_{n}+\frac{1}{6}\left(\boldsymbol{k}_{1}+2 \boldsymbol{k}_{2}+2 \boldsymbol{k}_{3}+\boldsymbol{k}_{4}\right),
$$

where between each time step, the vectors \boldsymbol{k}_{j} are defined as

$$
\begin{aligned}
& \boldsymbol{k}_{1}=h \boldsymbol{F}\left(\boldsymbol{x}_{n}\right), \\
& \boldsymbol{k}_{2}=h \boldsymbol{F}\left(\boldsymbol{x}_{n}+\boldsymbol{k}_{1} / 2\right), \\
& \boldsymbol{k}_{3}=h \boldsymbol{F}\left(\boldsymbol{x}_{n}+\boldsymbol{k}_{2} / 2\right), \\
& \boldsymbol{k}_{4}=h \boldsymbol{F}\left(\boldsymbol{x}_{n}+\boldsymbol{k}_{3}\right) .
\end{aligned}
$$

For Problem Set 4, you will need to write code for the fourth-order Runge-Kutta method in twodimensions. The one-dimensional version of the code (in MATLAB) is uploaded on Stellar, which may be of use!

