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Faraday waves and bouncing droplets
• Oscillate a fluid bath vertically at a frequency 

f, amplitude A
• Above critical threshold, Faraday instability 

arises
• Below threshold, can bounce/walk a droplet 

on the decaying waves
• Wave field memory: how many bouncing 

periods a generated wave persists for
• Pilot wave: droplet is ‘piloted’ by the fluid



Origin of the Faraday instability

• Model fluid as inviscid, irrotational
• Fluid velocity governed by Laplace’s 

equation
• Let fluid surface height be !(#, %)
• Expand

! #, % = (
)*+

,
-) .) #, %

∇0.) = −2)0 .)
• Can show that, after non-dimensionalising,
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Fluid inertia

Restoring forces due to gravity and surface tension

External driving of the fluid
Benjamin, Ursell, 1954



Origin of the Faraday instability
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• Analysis of this equation requires Floquet theory, as there is a time-
dependent forcing
• Results from Floquet theory: #$

!#$
!%

= 0 % 123

for some periodic vector-valued function 0 and real matrix 4: eigenvalues of 
4 determine growth rates of oscillations of #$
• Instability when eigenvalues have positive real part



Trajectory equation for bouncing droplets
• Waves emitted by droplet exhibit radial symmetry

• Wavelength emitted by the droplet matches wavelength of Faraday 
instability, !" =

$%
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• Radially symmetric superposition of plane waves is a Bessel function:
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• Below Faraday threshold, expect waves to decay exponentially

• Inertia, drag affect particle

• Force due to the wave is proportional to the slope of the local wave field

• Superposition of waves generated by each impact

• Assume horizontal motion slower than vertical motion: integrate over 
particle trajectory, average over vertical particle motion

• Current state depends on the droplet’s entire past history!
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K: memory, reciprocal of how many previous 
droplet impacts contribute to wave field
K = 0 is Faraday threshold
K = 1 is walking threshold
:): non-dimensionalised mass



Instability of bouncing state
• A bouncing state is given by !" = $
• Linearise: !" = $ + &
• Linearised equations become (using that '() 0 = (
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• Define now
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• Letting now = = &, recast as a 3D linear system, find eigenvalues
• Bouncing state destabilises for < < 1
• Physically: bouncing state is stabilised by drag and destabilised by the wave force

Oza, Rosales, Bush (JFM) 2013



Walking state

• Consider a 1D walker, where !" = $%&'!
• Trajectory equation simplifies to
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• Integral can be evaluated exactly; find

$ = 1
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• Require that at 7 = 1, $ = 0; indeed, 
find that $ = =( 1 − 7), indicative of a 
supercritical pitchfork bifurcation



Walking state stability
• Imagine a droplet walking at constant velocity, but is perturbed at time ! = 0
• Write $%(!) = (! + *$+ ! ,(!); think of it as adding an impulsive force to the particle at ! = 0 so that $+ 0 = 0, $+. 0 = +

/0
• Linearised equation:
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• Convolution: use Laplace transforms and convolution theorem.
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• Observe that the Laplace transform of :D@ is +
=;D; exponential growth rates correspond to singularities of Laplace transforms

• Want the singularities of ?(8) to determine exponential growth rates



Walking state stability diagram

• Eigenvalue with positive real 
part: unstable
• No eigenvalues with positive real 

parts: stable
• Most unstable eigenvalue 

complex: underdamped 
oscillations
• Most unstable eigenvalue real: 

overdamped oscillations
• Spin states possible! Circular 

orbits

Durey, Bush, Chaos 2021



Spin states

• Γ = 1 − %; Γ = 1 is Faraday 
threshold
• Substituting &' =() cos -. , () sin -. into 

trajectory equation,
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• Small region of stability for smallest 
radius spin states
• What happens if you add rotation 

to the system?

Oza, Rosales and Bush (Chaos) 2018



Rotating frame

• Externally rotate the system with angular velocity !
• In the (non-inertial) frame of the fluid, Coriolis and centripetal forces 

arise
• Can show that the fluid will develop a parabolic surface to cancel the 

centripetal force; only consider Coriolis
"#%̈& + %̇& = −2∇ℎ %& . , . − !×%̇&
ℎ %, . = 1
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• Straight line walking states become circular orbits



Stability analysis

• Consider an impulse acting at ! = 0, of the 
form $%&(̂ + $%* +,, $ ≪ 1

• Linearise
( ! = (/ + $(0 ! 1 !
, ! = 2! + $,0 ! 1(!)

• Obtain a 2x2 linear system for the Laplace 
transforms 5 6 , Θ(6) of (0(!), ,0(!)9(6) −;(6)
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• Eigenvalues occur for values of 6 when the 

Laplace transforms are singular: 
determinant must vanish

• Solve F s = 9 6 = 6 + ; 6 < 6 = 0



Stability function
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• In the absence of rotation, A, D represent the stability functions for inline and lateral perturbations to 
2D straight line walking

• First derived by Oza et al (2014, JFM)

• A 0 = A ±D) = 0; trivial eigenvalues

• These represent translational and rotational symmetry



Regime diagrams

• Colour scheme: stable, oscillatory unstable, non-oscillatory unstable
• Horizontal slices result in the snake curves on the previous slides
• For larger mass, more stable orbital states can be observed



Stability boundaries

• Two types of linear instabilities
• Non-oscillatory instabilities: dominant 

eigenvalue is real and positive
• Oscillatory instabilities: dominant eigenvalue 

is complex with positive real part
• For non-oscillatory instabilities, stability 

boundary occurs when 0 is the dominant 
(non-trivial) eigenvalue
• 0 is a non-trivial eigenvalue when !" 0 = 0

• For oscillatory instabilities, stability 
boundary occurs when the dominant non-
trivial eigenvalue is imaginary

• On the snake curves, stability boundaries 
are where blue changes colour



Effects of small rotation

• At zero rotation and high 
memory, always exists range of 
!" for which spin state is stable
• Not true with small rotation
• Bath rotation destroys the 

symmetry of the two directions 
of orbital states

Consider bath rotation direction vs orbital direction



Effects of small rotation on stability boundaries

• Here, ! < 0 for all states, so Ω > 0
corresponds to counter-rotating etc

• Counter-rotating spin states (Ω = 0,! <
0) are stabilised by weak rotation

• Co-rotating spin states are destabilised by 
weak rotation

• Can show asymptotically that ( ∼ 0.322Ω
for the stability boundary at -. = 0 for 
counter-rotating state, but ( ∼ −1.697Ω
for the co-rotating state
• Mathematical justification for preference of 

counter-rotating state
• Can solve for location of the cusp 

asymptotically for small Ω too



Co-rotating state stability

• Stability region of co-rotating state 
shrinks with bath rotation
• Critical Ω for which stability region 

vanishes is found by imposing 
"# = %&'

() = 0 at the stability 
boundary
• Result: Ω = −0.0732
• No stable larger radius cyclonic 

states were found



Nonlinear dynamics: experiments (Harris et al, 
JFM 2014)
• Performed experiments on  

walking droplets in a rotating 
frame in high memory
• Describes onset of orbital 

quantization at low memory
• Wobbling orbits, chaotic orbits
• Think of these as supercritical 

Hopf bifurcations of circular orbits
• Multimodal statistics when 

tracing histograms of radius of 
curvature



Nonlinear dynamics: Oza et al. (2014) (PoF) 

• Numerical solutions of trajectory 
equation
• Blue regions are stable, 

everything else linearly unstable
• Describes nonlinear behaviour in 

linearly unstable regions
• Simulated orbits were 

qualitatively in agreement with 
experiments of Harris



Other developments (past, present and 
future)
• Past

• Hydrodynamic quantum analogs: use this system as an analogy of quantum 
mechanics, e.g. quantum tunnelling, quantum computers, double slit interference

• Lattices of bouncing droplets

• Present
• Me: investigating stability boundaries of rotating frame system in various asymptotic 

limits, like large rotation, large radius (first one is done, second one is partially done)
• Others: extension to 3D pilot wave systems, Bell’s inequality

• Future
• Me: nonlinear dynamics of rotating frame, probability distributions of bouncing 

droplets and any relationships with quantum mechanics


