An introduction to pilot-wave dynamics

Nicholas Liu
December $2^{\text {nd }} 2021$

Faraday waves and bouncing droplets

- Oscillate a fluid bath vertically at a frequency f , amplitude A
- Above critical threshold, Faraday instability arises
- Below threshold, can bounce/walk a droplet on the decaying waves
- Wave field memory: how many bouncing periods a generated wave persists for
- Pilot wave: droplet is 'piloted' by the fluid

Vibrational acceleration: $\gamma=A(2 \pi f)^{2}$
$\gamma>\gamma_{F} \approx 4 g$

Frequency f Amplitude A

Origin of the Faraday instability

- Model fluid as inviscid, irrotational
- Fluid velocity governed by Laplace's equation
- Let fluid surface height be $\zeta(x, y)$
- Expand

$$
\begin{gathered}
\zeta(x, y)=\sum_{m=0}^{\infty} a_{m} S_{m}(x, y) \\
\nabla^{2} S_{m}=-k_{m}^{2} S_{m}
\end{gathered}
$$

- Can show that, after non-dimensionalising,

$$
\frac{d^{2} a_{m}}{d t^{2}}+\left(p_{m}-2 q_{m} \cos (2 t)\right) a_{m}=0
$$

Restoring forces due to gravity and surface tension

Fluid inertia

External driving of the fluid
External driving of the fluid

Benjamin, Ursell, 1954

Frequency f Amplitude A

Origin of the Faraday instability

$$
\frac{d^{2} a_{m}}{d t^{2}}+\left(p_{m}-2 q_{m} \cos (2 t)\right) a_{m}=0
$$

- Analysis of this equation requires Floquet theory, as there is a timedependent forcing
- Results from Floquet theory:

$$
\left[\begin{array}{c}
a_{m} \\
\frac{d a_{m}}{d t}
\end{array}\right]=Q(t) e^{t R}
$$

for some periodic vector-valued function Q and real matrix R : eigenvalues of R determine growth rates of oscillations of a_{m}

- Instability when eigenvalues have positive real part

Trajectory equation for bouncing droplets

- Waves emitted by droplet exhibit radial symmetry
- Wavelength emitted by the droplet matches wavelength of Faraday instability, $\lambda_{F}=\frac{2 \pi}{k_{F}}$
- Radially symmetric superposition of plane waves is a Bessel function:

$$
J_{0}(r)=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{i r \cos (\theta)} d \theta
$$

- Below Faraday threshold, expect waves to decay exponentially
- Inertia, drag affect particle
- Force due to the wave is proportional to the slope of the local wave field
- Superposition of waves generated by each impact
- Assume horizontal motion slower than vertical motion: integrate over particle trajectory, average over vertical particle motion
- Current state depends on the droplet's entire past history!

$$
\begin{aligned}
& \qquad \kappa_{0} \ddot{x}_{p}+\dot{x}_{p}=-2 \nabla h\left(x_{p}(t), t\right) \\
& h(\boldsymbol{x}, t)=\int_{-\infty}^{t} J_{0}\left(\left|\boldsymbol{x}-\boldsymbol{x}_{p}(s)\right|\right) e^{-\epsilon(t-s)} d s \\
& \epsilon: \text { memory, reciprocal of how many previous } \\
& \text { droplet impacts contribute to wave field } \\
& \epsilon=0 \text { is Faraday threshold } \\
& \epsilon=1 \text { is walking threshold } \\
& \kappa_{0}: \text { non-dimensionalised mass }
\end{aligned}
$$

Instability of bouncing state

- A bouncing state is given by $\boldsymbol{x}_{\boldsymbol{p}}=\boldsymbol{c}$
- Linearise: $\boldsymbol{x}_{\boldsymbol{p}}=\boldsymbol{c}+\boldsymbol{X}$
- Linearised equations become (using that $J_{1}^{\prime}(0)=\frac{1}{2}$)

$$
\kappa_{0} \boldsymbol{X}^{\prime \prime}+\boldsymbol{X}^{\prime}=\frac{1}{2} \int_{-\infty}^{t^{2 \prime}}(\boldsymbol{X}(t)-\boldsymbol{X}(s)) e^{-\epsilon(t-s)} d s
$$

- Define now

$$
\begin{gathered}
\boldsymbol{Y}(t)=\int_{-\infty}^{t} \boldsymbol{X}(s) e^{-\epsilon(t-s)} d s \\
\kappa_{0} \boldsymbol{X}^{\prime \prime}+\boldsymbol{X}^{\prime}=\frac{1}{2}(\boldsymbol{X}-\boldsymbol{Y}) \\
\boldsymbol{Y}^{\prime}=\boldsymbol{X}-\epsilon \boldsymbol{Y}
\end{gathered}
$$

- Letting now $\boldsymbol{Z}=\boldsymbol{X}$, recast as a 3D linear system, find eigenvalues
- Bouncing state destabilises for $\epsilon<1$
- Physically: bouncing state is stabilised by drag and destabilised by the wave force

Walking state

- Consider a 1D walker, where $\boldsymbol{x}_{\boldsymbol{p}}=u t \hat{\boldsymbol{e}}_{\boldsymbol{x}}$
- Trajectory equation simplifies to

$$
u=2 \int_{-\infty}^{t} J_{1}(u(t-s)) e^{-\epsilon(t-s)} d s
$$

- Integral can be evaluated exactly; find

$$
u=\frac{1}{\sqrt{2}}\left(4-\epsilon^{2}-\epsilon \sqrt{\epsilon^{2}+8}\right)^{\frac{1}{2}}
$$

- Require that at $\epsilon=1, u=0$; indeed, find that $u=O(\sqrt{1-\epsilon})$, indicative of a supercritical pitchfork bifurcation

Walking state stability

- Imagine a droplet walking at constant velocity, but is perturbed at time $t=0$
- Write $x_{p}(t)=u t+\eta x_{1}(t) H(t)$; think of it as adding an impulsive force to the particle at $t=0$ so that $x_{1}(0)=0, x_{1}^{\prime}(0)=\frac{1}{\kappa_{0}}$
- Linearised equation:

$$
\kappa_{0} x_{1}^{\prime \prime}(t)+x_{1}^{\prime}(t)=\epsilon x_{1}(t)-2 \int_{0}^{\infty} x_{1}(t-s) J_{1}^{\prime}(u s) e^{-\epsilon s} d s
$$

- Convolution: use Laplace transforms and convolution theorem.

$$
\begin{gathered}
X(s)=\int_{0}^{\infty} x_{1}(t) e^{(-s t)} d t \\
\kappa_{0}\left(s^{2} X(s)-\frac{s}{\kappa_{0}}\right)+s X(s)=\epsilon X(s)-2 X(s) \int_{0}^{\infty} J_{1}^{\prime}(u t) e^{-t(s+\epsilon)} d t \\
X(s)=s\left(\kappa_{0}+s-\epsilon+\frac{2(\epsilon+s)}{u^{2}}\left(1-\frac{\epsilon+s}{\sqrt{(\epsilon+s)^{2}+u^{2}}}\right)\right)^{-1}
\end{gathered}
$$

- Observe that the Laplace transform of $e^{a t}$ is $\frac{1}{s-a}$; exponential growth rates correspond to singularities of Laplace transforms
- Want the singularities of $X(s)$ to determine exponential growth rates

Walking state stability diagram

- Eigenvalue with positive real part: unstable
- No eigenvalues with positive real parts: stable
- Most unstable eigenvalue complex: underdamped oscillations
- Most unstable eigenvalue real: overdamped oscillations
- Spin states possible! Circular orbits

Spin states

- $\Gamma=1-\epsilon ; \Gamma=1$ is Faraday threshold
- Substituting $\boldsymbol{x}_{\boldsymbol{p}}=$
$\left(r_{0} \cos (\omega t), r_{0} \sin (\omega t)\right)$ into trajectory equation,

$$
\begin{gathered}
-\kappa r_{0} \omega^{2}=2 \int_{0}^{\infty} J_{1}\left(2 r_{0} \sin \left(\frac{\omega S}{2}\right)\right) \sin \left(\frac{\omega S}{2}\right) e^{-\epsilon s} d s \\
r_{0} \omega=2 \int_{0}^{\infty} J_{1}\left(2 r_{0} \sin \left(\frac{\omega S}{2}\right)\right) \cos \left(\frac{\omega S}{2}\right) e^{-\epsilon s} d s
\end{gathered}
$$

- Small region of stability for smallest radius spin states
- What happens if you add rotation to the system?

Oza, Rosales and Bush (Chaos) 2018

Rotating frame

- Externally rotate the system with angular velocity $\boldsymbol{\Omega}$
- In the (non-inertial) frame of the fluid, Coriolis and centripetal forces arise
- Can show that the fluid will develop a parabolic surface to cancel the centripetal force; only consider Coriolis

$$
\begin{gathered}
\kappa_{0} \ddot{\boldsymbol{x}}_{\boldsymbol{p}}+\dot{\boldsymbol{x}}_{\boldsymbol{p}}=-2 \nabla h\left(\boldsymbol{x}_{\boldsymbol{p}}(t), t\right)-\vec{\Omega} \times \dot{x}_{p} \\
h(\boldsymbol{x}, t)=\int_{-\infty}^{t} J_{0}\left(\left|\boldsymbol{x}-\boldsymbol{x}_{\boldsymbol{p}}(s)\right|\right) e^{-\epsilon(t-s)} d s
\end{gathered}
$$

- Straight line walking states become circular orbits

Stability analysis

- Consider an impulse acting at $t=0$, of the form $\eta c_{r} \hat{r}+\eta c_{\theta} \theta, \eta \ll 1$
- Linearise

$$
\begin{gathered}
r(t)=r_{0}+\eta r_{1}(t) H(t) \\
\theta(t)=\omega t+\eta \theta_{1}(t) H(t)
\end{gathered}
$$

- Obtain a 2×2 linear system for the Laplace transforms $R(s), \Theta(s)$ of $r_{1}(t), \theta_{1}(t)$

$$
\left[\begin{array}{cc}
A(s) & -B(s) \\
C(s) & D(s)
\end{array}\right]\left[\begin{array}{c}
R(s) \\
r_{0} \Theta(s)
\end{array}\right]=\left[\begin{array}{c}
c_{r} \\
r_{0} c_{\theta}
\end{array}\right]
$$

- Eigenvalues occur for values of s when the Laplace transforms are singular: determinant must vanish

- Solve $\mathrm{F}(\mathrm{s})=A(s) D(s)+B(s) C(s)=0$

Stability function

$$
\begin{gathered}
A(s)=\kappa_{0}\left(s^{2}-2 \omega^{2}\right)+\epsilon+s-2 \Omega \omega+\int_{0}^{\infty}\left(J_{0}\left(2 r_{0} \sin \left(\frac{\omega t}{2}\right)\right) \cos (\omega t)+J_{2}\left(2 r_{0} \sin \left(\frac{\omega t}{2}\right)\right)\right) e^{-(\epsilon+s) t} d t-2 \int_{0}^{\infty} J_{0}\left(2 r_{0} \sin \left(\frac{\omega t}{2}\right)\right) e^{-\epsilon t} d t \\
D(s)=\kappa_{0} s^{2}+s-\epsilon+\int_{0}^{\infty}\left(J_{0}\left(2 r_{0} \sin \left(\frac{\omega t}{2}\right)\right) \cos (\omega t)-J_{2}\left(2 r_{0} \sin \left(\frac{\omega t}{2}\right)\right)\right) e^{-(\epsilon+s) t} d t \\
B(s)=2 \kappa_{0} \omega s+\Omega s-\epsilon\left(\omega \kappa_{0}+\Omega\right)-\int_{0}^{\infty} J_{0}\left(2 r_{0} \sin \left(\frac{\omega t}{2}\right)\right) \sin (\omega t) e^{-(\epsilon+s) t} d t \\
C(s)=2 \kappa_{0} \omega s+2 \omega+\Omega s+\epsilon\left(\omega \kappa_{0}+\Omega\right)-\int_{0}^{\infty} J_{0}\left(2 r_{0} \sin \left(\frac{\omega t}{2}\right)\right) \sin (\omega t) e^{-(\epsilon+s) t} d t \\
F(s)=A(s) D(s)+B(s) C(s)
\end{gathered}
$$

- In the absence of rotation, A, D represent the stability functions for inline and lateral perturbations to 2D straight line walking
- First derived by Oza et al (2014, JFM)
- $F(0)=F(\pm i \omega)=0$; trivial eigenvalues
- These represent translational and rotational symmetry

Regime diagrams

- Colour scheme: stable, oscillatory unstable, non-oscillatory unstable - Horizontal slices result in the snake curves on the previous slides
- For larger mass, more stable orbital states can be observed

Stability boundaries

- Two types of linear instabilities
- Non-oscillatory instabilities: dominant eigenvalue is real and positive
- Oscillatory instabilities: dominant eigenvalue is complex with positive real part
- For non-oscillatory instabilities, stability boundary occurs when 0 is the dominant (non-trivial) eigenvalue
- 0 is a non-trivial eigenvalue when $F^{\prime}(0)=0$
- For oscillatory instabilities, stability boundary occurs when the dominant nontrivial eigenvalue is imaginary
- On the snake curves, stability boundaries are where blue changes colour

Effects of small rotation

- At zero rotation and high memory, always exists range of κ_{0} for which spin state is stable
- Not true with small rotation
- Bath rotation destroys the symmetry of the two directions of orbital states

Effects of small rotation on stability boundaries

- Here, $\omega<0$ for all states, so $\Omega>0$ corresponds to counter-rotating etc
- Counter-rotating spin states ($\Omega=0, \omega<$ 0) are stabilised by weak rotation
- Co-rotating spin states are destabilised by weak rotation
- Can show asymptotically that $\epsilon \sim 0.322 \Omega$ 上 for the stability boundary at $\kappa_{0}=0$ for counter-rotating state, but $\epsilon \sim-1.697 \Omega$ for the co-rotating state
- Mathematical justification for preference of counter-rotating state
- Can solve for location of the cusp asymptotically for small Ω too

Spin state boundaries

Co-rotating state stability

- Stability region of co-rotating state shrinks with bath rotation
- Critical Ω for which stability region vanishes is found by imposing $\kappa_{0}=\frac{\mathrm{d} \kappa_{0}}{d \epsilon}=0$ at the stability boundary
- Result: $\Omega=-0.0732$
- No stable larger radius cyclonic states were found

Movement of the stability region of cyclonic state

Nonlinear dynamics: experiments (Harris et al, JFM 2014)

- Performed experiments on walking droplets in a rotating frame in high memory
- Describes onset of orbital quantization at low memory
- Wobbling orbits, chaotic orbits
- Think of these as supercritical Hopf bifurcations of circular orbits
- Multimodal statistics when tracing histograms of radius of curvature

Nonlinear dynamics: Oza et al. (2014) (PoF)

- Numerical solutions of trajectory equation
- Blue regions are stable, everything else linearly unstable
- Describes nonlinear behaviour in linearly unstable regions
- Simulated orbits were qualitatively in agreement with experiments of Harris

Other developments (past, present and future)

- Past
- Hydrodynamic quantum analogs: use this system as an analogy of quantum mechanics, e.g. quantum tunnelling, quantum computers, double slit interference
- Lattices of bouncing droplets
- Present
- Me: investigating stability boundaries of rotating frame system in various asymptotic limits, like large rotation, large radius (first one is done, second one is partially done)
- Others: extension to 3D pilot wave systems, Bell's inequality
- Future
- Me: nonlinear dynamics of rotating frame, probability distributions of bouncing droplets and any relationships with quantum mechanics

