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Faraday waves and bouncing droplets

* Oscillate a fluid bath vertically at a frequency Vibrational acceleration: 7 = A(27 f)?
f, amplitude A v > yp A dg

* Above critical threshold, Faraday instability
arises

* Below threshold, can bounce/walk a droplet
on the decaying waves

* Wave field memory: how many bouncing Frequency f
periods a generated wave persists for Amplitude A

* Pilot wave: droplet is ‘piloted’ by the fluid




Origin of the Faraday instability

Vibrational acceleration: v = A(27 f)?

Model fluid as inviscid, irrotational >y dg

Fluid velocity governed by Laplace’s
equation

Let fluid surface height be {(x, y)
* Expand Frequency f

(00] Amplitude A

((x'y) — 2 amSm(x:y)

m=0
Vsz = —k%Sm
Can show that, after non-dimensionalising, Fluid inertia

d*a,,
—+ (0., — 2q; cos(2t))am = 0
dt External driving of the fluid

Benjamin, Ursell, 1954




Origin of the Faraday instability

da,,
dt?
* Analysis of this equation requires Floquet theory, as there is a time-
dependent forcing

+ (P, — 29, cos(2t))a,,, = 0

e Results from Floquet theory:

a, -
dam| = Q(t)e™
L dt
for some periodic vector-valued function Q and real matrix R: eigenvalues of
R determine growth rates of oscillations of a,,

* |nstability when eigenvalues have positive real part



Trajectory equation for bouncing droplets

*  Waves emitted by droplet exhibit radial symmetry

* Wavelength emitted by the droplet matches wavelength of Faraday

2T

instability, Az = P
F

* Radially symmetric superposition of plane waves is a Bessel function:

2T

1 .
— chos(e)de
W) =g e

* Below Faraday threshold, expect waves to

, drag affect particle

* Force due to the wave is proportional to the slope of the local wave field

+ X, = —2Vh(x, (1), t)

* Superposition of waves generated by each impact

t

* Assume horizontal motion slower than vertical motion: integrate over h(x, t) = j ]0 (|x - xp (S) D ds
particle trajectory, average over vertical particle motion — 00

€: memory, reciprocal of how many previous

droplet impacts contribute to wave field
€ = 0 is Faraday threshold

e = 1 is walking threshold

Kq: hon-dimensionalised mass

* Current state depends on the droplet’s entire past history!



Instability of bouncing state

* Abouncing state is given by x,, = ¢
* Llinearise: x, = c+ X

* Linearised equations become (using that J; (0) = %)

1 t
Ko X"+ X' = Ef (X(t) — X(S))e‘e(t's)ds

* Define now

t
Y(t) =f X(s)e €= g5

KoX"' + X' = %(X —-Y)
Y =X—-¢€Y
* Letting now Z = X, recast as a 3D linear system, find eigenvalues
* Bouncing state destabilises fore < 1
* Physically: bouncing state is stabilised by drag and destabilised by the wave force

Oza, Rosales, Bush (JFM) 2013



Walking state

* Consider a 1D walker, where x,, = ute,

p
* Trajectory equation simplifies to

t
u = Zf Ji(u(t —s))e €t=5)ds

* Integral can be evaluated exactly; flind
1 _
_——(a_ 2 _ 2 2
U = \/5(4 € e\/e + 8)
* Require thatate = 1, u = 0; indeed,
find thatu = O(v1 — €), indicative of a
supercritical pitchfork bifurcation




Walking state stability

* Imagine a droplet walking at constant velocity, but is perturbed at timet = 0
* Write x,, (t) = ut + nx; (t)H(t); think of it as adding an impulsive force to the particle at t = 0 so that x;(0) = 0,x;(0) = Ki
0

* Linearised equation:

[00]

Koxi (t) + x1(t) = ex1(t) — 2] x1(t —s)J1(us)e ds
0

* Convolution: use Laplace transforms and convolution theorerrgé
X(s) =j x;(t)esOdt
0

Ko (SZX(S) — K%) + sX(s) = eX(s) — 2X(s) fooo]{(ut)e‘t(ﬁe) dt

-1
2(e+s)<1_ €+s )
u? J(€+5)? +u?

X(s)=s|{Kkg+s—€e+

.1 . . .
« Observe that the Laplace transform of et is p— exponential growth rates correspond to singularities of Laplace transforms

* Want the singularities of X(s) to determine exponential growth rates



Walking state stability diagram

* Eigenvalue with positive real
part: unstable

* No eigenvalues with positive real
parts: stable

* Most unstable eigenvalue
complex: underdamped
oscillations

* Most unstable eigenvalue real:
overdamped oscillations

* Spin states possible! Circular
orbits
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Spin states

eI'=1—¢, ' =1is Faraday
threshold

* Substituting x,,
(rp.cos(wt), ro sm(wt)) into
trajectory equation,

—KTow? = 2 Jo J1 (Zro sin (Q;S)) sin (%S) e~ **ds

Tow = 2 fooojl (2r0 sin (%S)) cos (%S) e~ %ds

* Small region of stability for smallest

radius spln states

 What happens if you add rotation
to the system?
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Rotating frame

* Externally rotate the system with angular velocity

* In the (non-inertial) frame of the fluid, Coriolis and centripetal forces
arise

* Can show that the fluid will develop a parabolic surface to cancel the
centripetal force; only consider Coriolis

Kokp + &, = —2Vh(x,(t),t) — Oxi,
t
hix,t) = j Jo(|x = x,(s)|)e €= ds

 Straight line walking states become circular orbits



Stability analysis

e Consider an impulse acting at t = 0, of the
formnc, 7 +ncgf, n K 1
* Linearise
r(t) =ro +nri(OH()
O(t) = wt +nb,(t)H(t)
e Obtain a 2x2 linear system for the Laplace
transforms R(s), O(s) of r;(t), 0, (t)
A(s) —B(S)][ R(s) | _ ’ Cr ]
C(s) D(s) |lrg0(s)] ~ Lroce
* Eigenvalues occur for values of s when the

Laplace transforms are singular:
determinant must vanish

* Solve F(s) = A(s)D(s) + B(s)C(s) =0

oy
Ny

O



Stability function

A(s) = Kko(s? —20%) + e+ 5 — 20w + j ( 0 <2r0 sin (7» cos(wt) + J, <2r0 sin (7») e~(€+s)tge — ZJ Jo (27‘0 sin (7» e~€tdt
0 0
” t wt
D(s) = K052 +s—e+ j (]0 (Zro sin (%)) cos(wt) — J, (27«0 sin (7») o~ (€+)t ¢
0
* t
B(s) = 2kyws + Qs — e(wky + Q) — j Jo (27‘oSin (%)) sin(wt) e~ €+t gt
0

C(s) = 2kows + 2w + Qs + e(wky + Q) — joojo QZrosin (%)) sin(wt) e+t gt
F(s) = A(s)D(s) + B(s)C(s)

In the absence of rotation, A, D represent the stability functions for inline and lateral perturbations to
2D straight line walking Stability for I = 0.76, kO = 0.3

First derived by Oza et al (2014, JFM) il
F(0) = F(+iw) = 0; trivial eigenvalues

These represent translational and rotational symmetry
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Regime diagrams

Stability diagram for kO = 0.1 Stability diagram for k0 = 1.0 Stability diagram for kKO = 9.9

0.64 1.28 1.92 2.56 3.2 3.84 4.48 5.12 5.76

0.64 128 192 256 32 384 448 512 576
r0 (AF)

r0 (AF) 0.64 1.28 1.92 2.56 3.2 3.84  4.48 5.12 5.76
r0 (AF)

* Colour scheme: stable, oscillatory unstable, non-oscillatory unstable
* Horizontal slices result in the snake curves on the previous slides
* For larger mass, more stable orbital states can be observed



Stability boundaries

Two types of linear instabilities

* Non-oscillatory instabilities: dominant
eigenvalue is real and positive

* Oscillatory instabilities: dominant eigenvalue
is complex with positive real part

* For non-oscillatory instabilities, stability
boundary occurs when 0 is the dominant
(non-trivial) eigenvalue

* 0is a non-trivial eigenvalue when F'(0) = 0
* For , stability
boundary occurs when the dominant non-
trivial eigenvalue is imaginary

* On the snake curves, stability boundaries
are where blue changes colour
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Effects of small rotation

* At zero rotation and high
memory, always exists range of
K, for which spin state is stable

 Not true with small rotation
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Consider bath rotation direction vs orbital direction



Effects of small rotation on stability boundaries

Here, w < 0O for all states, so 2 > 0 | |
corresponds to counter-rotating etc Spin state boundaries

Counter-rotating spin states (A = 0, w < “l
0) are stabilised by weak rotation

Co-rotating spin states are destabilised by |
weak rotation

Can show asymptotically that € ~ 0.322Q) .
for the stability boundary at Ky = 0 for 08 |
counter-rotating state, but e ~ —1.697()
for the co-rotating state

* Mathematical jUStifiCation for preference Of 07 L
counter-rotating state

Can solve for location of the cusp 000 005 010 013 020 035
asymptotically for small Q) too KO



Co-rotating state stability

° Stablllty rgglon Of Co—rqtatlng state Movement of the stability region of cyclonic state
shrinks with bath rotation

* Critical Q) for which stability region

vanishes is found by imposing
dKO

09

I (memory)

Ko = —— = 0 at the stability
boundary
e Result: Q = —0.0732 e
* No stable larger radius cyclonic NG

states were found



Nonlinear dynamics: experiments (Harris et al,

JFM 2014)

* Performed experiments on
walking droplets in a rotating
frame in high memory

e Describes onset of orbital
guantization at low memory

* Wobbling orbits, chaotic orbits

* Think of these as supercritical
Hopf bifurcations of circular orbits

* Multimodal statistics when
tracing histograms of radius of
curvature
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Nonlinear dynamics: Oza et al. (2014) (PoF)

0.98

* Numerical solutions of trajectory
equation

* Blue regions are stable,
everything else linearly unstable

* Describes nonlinear behaviourin .
linearly unstable regions or — —
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Other developments (past, present and
future)

* Past

 Hydrodynamic quantum analogs: use this system as an analogy of quantum
mechanics, e.g. quantum tunnelling, quantum computers, double slit interference

 Lattices of bouncing droplets

* Present

* Me: investigating stability boundaries of rotating frame system in various asymptotic
limits, like large rotation, large radius (first one is done, second one is partially done)

e Others: extension to 3D pilot wave systems, Bell’s inequality

* Future

 Me: nonlinear dynamics of rotating frame, probability distributions of bouncing
droplets and any relationships with quantum mechanics



