
18.325: Vortex Dynamics

Problem Sheet 1

1. Fluid is barotropic which means p = p(ρ). The Euler equation, in presence
of a conservative body force, is

Du

Dt
= −

1

ρ
∇p−∇χ.

This can be written, on use of a vector identity,

∂u

∂t
+ ∇

(

1

2
|u|2

)

− u ∧ ω = −
1

ρ
∇p−∇χ. (1)

Take the curl:

∂ω

∂t
−∇ ∧ (u ∧ ω) = −∇

(

1

ρ

)

∧∇p =
p′(ρ)

ρ2
∇ρ ∧ ∇ρ = 0. (2)

On use of a vector identity we get

∂ω

∂t
+ u.∇ω − ω.∇u− u(∇.ω) + ω(∇.u). (3)

Now, ∇.ω = 0 since div curl=0. Now use conservation of mass equation to
substitute for ∇.u:

∇.u = −
1

ρ

Dρ

Dt
(4)

so
Dω

Dt
− ω.∇u−

ω

ρ

Dρ

Dt
= 0. (5)

Dividing by ρ gives the final result

D

Dt

(

ω

ρ

)

=
ω

ρ
.∇u. (6)

2. Assume a barotropic fluid in a conservative force field. Let

Γ =

∮

C

u.dl. (7)

Take time derivative
dΓ

dt
=

∮

C

Du

Dt
.dl + u.

Ddl

Dt
(8)

But it is known that Ddl/Dt = du. Using this, together with the Euler
equation,

dΓ

dt
=

∮

C

(

−
1

ρ
∇p−∇χ

)

.dl + d

(

|u|2

2

)

(9)



But this can be written in the form

dΓ

dt
=

∮

C

∇

(

−

∫ ρ 1

ρ′
dp

dρ′
dρ′ − χ+

|u|2

2

)

.dl (10)

which is the integral, around a closed loop, of a total spatial differential of
a single-valued function. It is therefore zero and yields Kelvin’s circulation
theorem for a barotropic fluid.

3. For a barotropic fluid, Euler’s equation can be written in the form

∂u

∂t
+ +

1

2
∇|u|2 + ω ∧ u = −∇

∫ ρ 1

ρ′
dp

dρ′
dρ′ −∇χ. (11)

First form of Bernoulli: Suppose the flow is steady. Taking the dot
product of the Euler equation with u yields

−u.∇

(
∫ ρ 1

ρ′
dp

dρ′
dρ′ −∇χ−

1

2
|u|2

)

(12)

which means that the quantity
∫ ρ 1

ρ′
dp

dρ′
dρ′ −∇χ−

1

2
|u|2 (13)

is constant on streamlines.

Second form of Bernoulli: Suppose that the flow is irrotational. The
Euler equation then says that

∇

(
∫ ρ 1

ρ′
dp

dρ′
dρ′ + ∇χ +

1

2
|u|2

)

= 0 (14)

from which we deduce that
∫ ρ 1

ρ′
dp

dρ′
dρ′ + ∇χ +

1

2
|u|2 (15)

is constant everywhere.

Third form of Bernoulli: Suppose the flow is unsteady, but irrotational
(note, by Q2, we still have the “persistence of irrotational flow” for a barotropic
fluid so this is a consistent statement). Then u = ∇φ for some scalar φ. Then
the Euler equation says that

∇

(

−
∂φ

∂t
−

∫ ρ 1

ρ′
dp

dρ′
dρ′ −∇χ−

1

2
|u|2

)

= 0 (16)

which means that

∂φ

∂t
+

∫ ρ 1

ρ′
dp

dρ′
dρ′ + ∇χ +

1

2
|u|2 = H(t) (17)
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for some function of time H(t).

4. Let ui ρ and P be the velocity, density and pressure fields of any three-
dimensional steady solution of the incompressible Euler equation, i.e.,

uj
∂ui

∂xj

+
1

ρ

∂P

∂xi

= 0, (18)

and
∂ (ρui)

∂xi

= 0. (19)

Consider now the velocity, density and pressure fields ûi, ρ̂ and P̂ given by

ûi = λui, (20)

ρ̂ =
ρ

λ2
, (21)

P̂ = P (22)

where λ is assumed to be such that

ui
∂λ

∂xi
= 0. (23)

Note: this corresponds to the fact that λ is constant on streamlines. It must
be shown that if (18), (19) and (23) hold then so do

ûj
∂ûi

∂xj

+
1

ρ̂

∂P̂

∂xi

= 0, (24)

and
∂ (ρ̂ûi)

∂xi

= 0. (25)

First, to show that (24) holds, note that by (20) and (22),

ûj
∂ûi

∂xj
+

1

ρ̂

∂P̂

∂xi

= λuj
∂

∂xj
(λuj) +

λ2

ρ

∂P

∂xi

= λ2

(

uj
∂ui

∂xj
+
∂P

∂xi

)

+ λuiuj
∂λ

∂xj

= 0

(26)

where the last equality follows by (18) and provided (23) holds.
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To show that (25) holds, note that

∂ (ρ̂ûi)

∂xi
=

∂

∂xi

(ρui

λ

)

=
1

λ

∂ (ρui)

∂xi
+ ρui

∂

∂xi

(

1

λ

)

= −
1

λ2
ρui

∂λ

∂xi

= 0

(27)

where we have used both (19) and (23).

5. Assume an ideal fluid and a flow field of the form

u = (ur(r, z, t), 0, uz(r, z, t)). (28)

Taking the curl, in cylindrical polar coordinates,

∇∧ ω =

∣

∣

∣

∣

∣

∣

er reθ ez

∂r ∂θ ∂z

ur(r, z, r) 0 uz(r, z, r)

∣

∣

∣

∣

∣

∣

= (0, ω(r, z, t), 0) (29)

where

ω(r, z, t) =
∂ur

∂z
−
∂uz

∂r
. (30)

The vorticity equation is

∂ω

∂t
= ∇∧ (u ∧ ω) . (31)

Computation of the right hand side gives

(0, −
∂

∂z
(ωuz) −

∂

∂r
(ωur) , 0) (32)

so only the azimuthal term gives a non-trivial equation i.e.,

∂ω

∂t
+
∂(ωur)

∂r
+
∂(ωuz)

∂z
= 0 (33)

or, equivalently,

∂ω

∂t
+ ω

(

∂ur

∂r
+
∂uz

∂z

)

+ ur
∂ω

∂r
+ uz

∂ω

∂z
= 0. (34)

But, the conservation of mass equation is ∇.u = 0 which, in cylindrical polar
coordinates, takes the form

∂ur

∂r
+
ur

r
+
∂uz

∂z
= 0 (35)
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which can be used in the vorticity equation to reduce it to

∂ω

∂t
−
ωur

r
+ ur

∂ω

∂r
+ uz

∂ω

∂z
= 0. (36)

But, dividing this by r, it is simply

(

∂

∂t
+ ur

∂

∂r
+ uz

∂

∂z

)

(ω

r

)

= 0 (37)

which is the required result.

Note that if the radius of a vortex ring increases then the vorticity equation
just derived shows that the dynamics is such that the vorticity ω changes
linearly with the radius, thus as a ring is “stretched”, the vorticity intensifies.

6. In spherical polars, the condition ∇.u = 0 takes the form

1

r2

∂

∂r
(r2ur) +

1

r sin θ

∂

∂θ
(sin θ uθ) = 0 (38)

or, multiplying by r2 sin θ,

∂

∂r
(r2 sin θ ur) +

∂

∂θ
(r sin θ uθ) = 0. (39)

Therefore, introduce a streamfunction Ψ such that

r2 sin θ ur =
∂Ψ

∂θ
, r sin θ uθ = −

∂Ψ

∂r
. (40)

Computing the vorticity field gives

∇∧ ω =

∣

∣

∣

∣

∣

∣

er reθ r sin θeφ

∂r ∂θ ∂φ

ur(r, θ, t) uθ(r, θ, t) 0

∣

∣

∣

∣

∣

∣

= (0, 0, ω(r, θ, t)) (41)

where

ω(r, θ, t) =
1

r

∂(ruθ)

∂r
−

1

r

∂ur

∂θ
. (42)

Substituting for ur and uθ in terms of Ψ then gives the final result

ω = −
1

r sin θ

(

∂2Ψ

∂r2
+

1

r2

∂2Ψ

∂θ2
−

cot θ

r2

∂Ψ

∂θ

)

. (43)

For irrotational uniform flow past a sphere, we have ω = 0 while ur ∼ U cos θ
and uθ ∼ −U sin θ as r → ∞. Therefore, as r → ∞, Ψ ∼ Ur2 sin2 θ/2. This
suggests trying a separable solution of the form

Ψ(r, θ) = f(r) sin2 θ. (44)
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Substituting this ansatz into the vorticity equation just derived with ω = 0
yields the ordinary differential equation

0 = f ′′(r) −
2f

r2
(45)

which can be solved to yield

f(r) = Ar2 +
B

r
(46)

where A and B are constants. From the far-field conditions, we must pick
A = U/2. On r = a (the spherical boundary), we need Ψ to be constant.
Take Ψ = 0 without loss of generality. This determines B and the final
solution is

Ψ =
U

2

(

r2 −
a3

r

)

sin2 θ. (47)

Note: We will see this solution again when considering the “Hill’s spherical
vortex”.

7. Seek the solution of
∇2ψ = mδ(x− x

0
) (48)

that decays at infinity. Without loss of generality, take x
0

= 0. Multiply this
equation by eik.x and integrate over all space (i.e. take a Fourier transform):

∫

R3

eik.x∇2ψ =

∫

R3

eik.xmδ(x− x
0
) (49)

Green’s identity says that

∫

R3

(

u∇2v − v∇2u
)

dV = lim
R→∞

∫

SR

(u∇v − v∇u) .dS (50)

where SR is some radius-R spherical surface. The right side vanishes provided
everything decays sufficiently fast at infinity. Letting u = ψ and v = eik.x

gives
∫

eik.x∇2ψdV = −|k|2Ψ(k) (51)

where Ψ(k) is the Fourier transform of ψ, that is

Ψ(k) ≡

∫

R3

eik.xψdV. (52)

Use of this in (48) gives the result

Ψ(k) = −
m

|k|2
(53)
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Now, the easiest way to arrive at the result is to verify that the Fourier
transform of −m/(4πr) is −m/|k|2. But the Fourier transform of −m/(4πr)
is

∫

R3

−
1

4πr
eik.xdV =

∫ π

0

∫

2π

0

∫ ∞

0

−
1

4πr
ei|k|r cos θr2 sin θdθdφdr (54)

where we have adopted spherical polar coordinates to perform the integra-
tion. Carrying out the φ integration gives

−
1

4π
(2π)

∫ ∞

0

dr

∫ π

0

dθei|k|r cos θr sin θdθ (55)

but this allows a further integration with respect to θ yielding
∫ ∞

0

dr

|k|

[

e−i|k|r − ei|k|r

2i

]

= −

∫ ∞

0

sin |k|r

|k|
dr = −

1

|k|
Im

∫

C

ei|k|zdz (56)

where C is the contour consisting of the infinite ray along the positive real
z-axis. But ei|k|z is an analytic function of z in the first quadrant of the
z-plane, moreover it decays exponentially on the contour CR consisting of a
large radius-R quarter-circle between the positive real and imaginary axes of
the first quadrant. This means that Cauchy’s theorem can be used to argue
that the required integral is the same as

−
1

|k|
Im

∫

Ĉ

ei|k|zdz (57)

where Ĉ is the ray consisting of the positive imaginary axis of the z-plane.
Parametrizing this contour as z = iy for 0 ≤ y <∞ the integral becomes

−
1

|k|
Im

∫ ∞

0

e−|k|yidy = −
1

|k|2
(58)

which verifies that the Fourier transform of −1/(4πr) is −1/|k|2 as required.

8. From the Biot-Savart integral in 3d,

u = −
1

4π

∫

flow

1

r3
(x− x′) ∧ ω(x′)dx′dy′dz′ (59)

Now assume ω = 0 everywhere off the plane z = 0 and assume that x lies in
this plane. Then

u(x) = −
1

4π

∫

flow

(x− x′) ∧ ω(x′)
dx′dy′dz′

[(x− x′)2 + (y − y′)2 + (z − z′)2]3/2
(60)

so that, performing the z integration (using the hint),

u(x) = −
1

4π

∫

flow

(x− x′) ∧ ω(x′)
2dx′dy′

[(x− x′)2 + (y − y′)2]

= −
1

2π

∫

flow

(x− x′) ∧ ω(x′)
dx′dy′

r̂2

(61)

where r̂2 = |x−x′|2 is the distance between two vectors x and x′ in the plane
z = 0. This is precisely the 2d Biot-Savart result.
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