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Point-Vortex Dynamics
S Boatto, IMPA, Rio de Janeiro, Brazil

D Crowdy, Imperial College, London, UK Roughly speaking, following Descartes, a vortex p0020

© 2006 Elsevier Ltd. Al rights reserved. is an entity which makes particles move along
circular-like orbits. Examples are the cyclones and
anticyclones in the atmosphere, (see Figure 2).
Mathematically speaking, let #=(u,v,1w) € R> be a
velocity field, the associated vorticity field w is
Vortices have a long fascinating history. Descartes  defined to be

wrote in his Le Monde:

Introduction

] w=VAu 1]
. .que tous les mouvements qui se font au Monde sont
en quelque faon circulaire: Cest A dire que, quand un  In this article we are considering exclusively inviscid
corps quitte sa place, il entre toujours en celle d'un  flows which are also incompressible, that is,
autre, et celui-ci en celle d’un autre, et ainsi de suite
jusques au dernier, qui occupe au méme instant le lieu Vou=0 2]

délaissé par le premier. and have constant density p, which we normalize to

In particular, Descartes thought of vortices to ~ be equal to 1 (p=1). In two dimensions, a point-
model the dynamics of the solar system, as reported ~ VOTteX field is the s1mple;st of all vorticity f}eldgz it
by W W R Ball (1940): can be thought as an entity where the vorticity fl?ld

Descartes” physical theory of the universe, embodying 15 ancentrat?d mto,a} point. In Othe,r W(,)rds’ point

most of the results contained in his earlier and  VOTtices are singularities of the vorticity field! Then,

unpublished Le Monde, is given in his Principia, i the plane the vorticity field associated to a system

1644,... He assumes that the matter of the universe of N point vortices is

must be in motion, and that the motion must result in a N

number of vortices. He stated that the sun is the center Tob(r — 74) 3]

of an immense whirlpool of this matter, in which the —

planets float and are swept round like straws in a

whirlpool of water.

Q

Descartes’ theory was later on recused by Newton
in his Principia in 1687. Few centuries later,
W Thomson (1867) the later Lord Kelvin, made
use of vortices to formulate his atomic theory: each
atom was assumed to be made up of vortices in a
sort of ideal fluid. In 1878=79 .the =American
physicist A M Mayer conducted a few experiments
with needle magnets placed on floating pieces of (a) (b)
cork in an applied magnetic field, as toX)l}sb;bolq}ebxloSMsflggsobxb015F|gure 1 Thomson atomic model: (a) atom with three

studying atomic interactions and forms (Mayer  electrons and (b) atom with four electrons. From Thomson JJ
1878, Aref et al. 2003). In 1883 inspired by Mayer  (1883) A Treatise on the Motion of Vortex Rings. New York:

experiments, ] ] Thomson combined W Thomson’s Macmil_lan and _Thomson JJ (1904) Electricity and Matter
atomic theory with H von Helmholtz’s point-vortex Westmister Archibald Constable.

theory (Helmholtz 1858): he thought as the elec-
trons were point vortices inside a positively charged
shell (see Figure 1), the vortices being located at the
vertices of regular parallelograms and investigated
about the stability of such structures (see Thomson
(1883, section 2.1)). The vortex-atomic theory
survived for quite a few years up to Rutherford’s
experiments proved that atoms have quite a differ-
ent structure! Before continuing this historical/
modeling overview, let’s address the following

question: Figure 2 Hurricane Jeanne. Reproduced with permission from
what is a vortex and, more specifically, what is a point- the National Oceanic and Atmospheric Administration (NOAA)
vortex? (www.noaanews.noaa.gov).
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where I'y,a=1,...,N, is a constant and corre-
sponds to the vorticity (or circulation) of the
a-vortex, situated at #,. In fact by definition,
the circulation around a curve C delimiting a region
3 with boundary C,

Fc:jliwds://E(V/\u)wdA://Ew 4]

where we have used Stokes’ theorem to bring in the
vorticity. Then if the region contains only the ath
point vortex, we obtain

rC://Ew.dA:ra 5]

by eqn [3]. A positive (resp. negative} sign of T’y
indicates that the corresponding point vortex
induces an anticlockwise (resp. clockwise) particle
motion, see Figure 4a)). Is there an analog of a
point-vortex system for a three-dimensional flow?
Yes, and this brings in the analogy between vortex
lines and magnetic field lines that Mayer used in his
experiments with floating magnets. In fact, in three
dimensions, the notion of a point vortex can be
extended to that one of a straight vortex line (see
Figure 4b), where, by definition, a vortex line is a
curve that is tangent to the vorticity vector w at each
of its point. In this context we would like to mention
the beautiful experiments of Yarmchuck-Gordon—
Packard on vortices in superfluid helium. They
observed the formation of stable polygonal config-
urations of identical vortices, quite similar to the

particle
- >0 .>

IuI:cL2 u
E

(a)

r>0 @)

ones observed by Mayer with his magnets (see
Figures 5 and 1).

One would like to understand how such config-
urations form and to give a theoretical account
about their stability. In order to answer these
questions we have to first be able to describe the
dynamics of a system of point vortices from a
mathematical point of view.

Evolution Equations

Can point vortices be viewed as “discrete” (or
localized) solutions of Euler equation in two dimen-
sions? Let us consider the Euler equation
@erVu:prJrf 6]
ot
where p is the pressure, f = —VU is a conservative
force, and restrict our attention to the two-dimensional
setting, for example, vortex dynamics on the plane (or a
sphere). Then it is immediate that by taking the curl of
eqn’ [6] we obtain the evolution equation of the
vorticity, that is,
%Jru-Vw:O, or %(;:
where the operator D/Dt=09/0t +u - V is called the
material derivative and describes the evolution along
the flow lines. It follows from eqn [7] that in two
dimensions the vorticity is conserved as it is
transported along the flow lines. Then a natural
question arises: supposing the vorticity field w is
known, is it possible to deduce the velocity field u
generating w? Or in other words, is it possible to
solve the system of eqns [1]-[2]? It is immediate
to see that in general the solution is not unique,
if some boundary conditions are not specified (see
Marchioro and Pulvirenti (1993)). Furthermore, as
already observed by Kirchhoff in 1876 (Boatto and
Cabral 2003), in two dimensions we can recast the
fluid equations [1]-[2] into a Hamiltonian formal-
ism. In fact, notice that on the plane #=(x,y)} and
eqn [2] is still satisfied if we represent the velocity
components as

0 [7]

(b)

foo2o Figure 4 (a) Advected by the velocity field of one point vortex, a test particle follows a circular orbit, with a speed proportional to the
absolute value of the vortex circulation and inversely proportional to the square of its distance from the vortex. (b) Straight vortex lines.

p0030




MAPH 00485

Point-Vortex Dynamics 3

f0oo2s Figure & Photographs of vortex configurations in a rotated

sample of superfluid helium with 1,..., 11 vorticies. Reprinted
figure with permission from Yarmchuk EJ, Gordon MJV, and
Packard RE (1979) Observation of stationary vortices arrays in
rotating superfluid Helium. Physical Review Letters 43(3): 214—
217. Copyright (1979) by the American Physical Society.

.oV . o g
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that is, by means of ¥, called the stream function.
Formally, ¥ plays the réle of a Hamiltonian for the
pair of conjugate variables (x,y) and it is used to
describe the dynamics of a test particle, located at
(x,y) and advected by the flow. By substituting [8]
into [1], we obtain

AU(r) = w(r) 9]

that is, a Poisson equation with w as a source term.
Then, once we specify the vorticity field, by
inverting [9] we obtain the stream function ¥ to be

W(r) = / Glr, 7' )(r') d [10]

where G(r,7') is the Green’s function, solution of
the equation AG(x,y)= —d(x,y). The Green’s func-
tion both for the plane and the sphere is (Marchioro
and Pulvirenti 1993)

1
G(r.7') = — logllr | [11]

where [[r — #|* = (x — x')* 4y — ¥)%. By [10], once
we specify the vorticity field w(r) we can compute ¥,
and by replacing it into [8] the velocity field
becomes

u(r) :/K(r, w(r')dr’ [12]

where K(r,7')= f(rfr’)i/[Zﬂ'Hrfr’Hz} and it
represents ‘the velocity field generated by a point
vortex of intensity one, located at #'. Then by
considering the vorticity field generated by point
vortices, eqn [3], together with eqn [11], egn [10]
becomes

N
W) — %/ log |l — 7| (Z T80 — ra)> dr’
a=1

18 5
:747T2Falog|\r7ra|\ [13]
a=1

Equation [13] describes together with [8], the
dynamics of a test particle at a point r={(x,y) in
the plane. Analogously, it can be shown that the
dynamics of a systems of point vortices in the plane
is given by the equations

dx, 0H, dy.  0H,

& oy & w4

where (ga,pa)=(xa,Loya),a=1,...,N, is pair of
conjugate variables and H, is the generalization of
the stream function ¥ (eqn [13]):

1 X
H, = —E;Fafglog o — 75> [15]
artt
Notice that the vortex Hamiltonian H, (eqn [13]) is
an autonomous Hamiltonian and, as we will discuss
in the first subsection, it provides a good Lyapunov-
like function to study stability properties of some
vortex configurations. Moreover, H, is invariant
with respect to rotations and translations, then by
the Noether theorem there are other first integrals of
motion, that is,
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My :Zrkﬁ’k
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expressing, respectively, the conservation of angular
momentum, L, and linear momentum, M=
(My, M,), on the plane. We shall denote with M
the magnitude of M (i.e., M=|M||). Furthermore,
by introducing the Poisson bracket

v,g}—i@f@a—f@g)

= \0qa 0o OPu 09
1 (of o of og
_a:1 Ty \Ox0 0ya  0ya Ox4

we can construct three integrals in involution out of
the four conserved quantities L, My, M,, and H,.
These are L, M3 + M; and H,: in fact,

H,,L]=0, {HU,M,% + Mﬂ —0,
LM2+ M2 =0

It is then possible to reduce the system of equations
from N to N — 2 degrees of freedom. A Hamiltonian
system with N degrees of freedom is integrable
whenever there are N independent integrals of
motion in involution. It follows that a vortex system
with N <3 is integrable, whereas the system of
equations of four identical vortices has been shown
by Ziglin to be nonintegrable in the sense that there
are no other first integrals analytically depending on
the coordinates and circulations, and functionally
independent of L,H,, M., M, (see Ziglin (1982)).
The following, however, has been shown:

1. Lee K=Y k., be the total vorticity,
M= (M., M,) the total momentum and M= |M] .
Then, as shown by Aref and Stremler (1999), if K=0
and M =0, N-vortex problem [16] is integrable.

2. A system of four identical vortices (i.e., k, =k
for «=1,...,4) can undergo periodic or quasiper-
iodic motion for special initial conditions (see Aref
and Pomphrey (1982)). More specifically, the
motion of a system of four identical vortices can be
periodic; quasiperiodic, or chaotic depending on the
symmetry of the initial configuration. In fact, every
vortex configuration that belongs to the subspace of
symmetric configurations — xo = —xa42 and y,=
Yat2,0=1,2 — gives rise to an integrable vortex
motion.

We have that up to two vortices, the motion is
almost always periodic and the orbits are circles; the

only exception being the case for which k, = —k;q,
when the circles degenerate into straight lines. Thus,
a configuration of two point vortices is always a
relative equilibrium configuration, that is, there
exists a specific reference frame in which the two
vortices are at rest. If the vortices are identical
(=T, =T), the motion is synchronous with
frequency 2 =T"/7 and the vortices share the same
circular orbit (see Figure 6a). If the vortices are not
identical and have vorticities of different magnitudes
(say |T'1| > |T'2|), their motion is still synchronous
and periodic, with frequency = (I'1 +I'2)/(27),
and the vortices move on different circular orbits
(with 7, < r) both centered at the center of
vorticity. Note that for both cases, identical and
nonidentical vortices, we can view the vortex
dynamics in a’co-rotating frame where the vortices
are simply at rest.

For three vortices we can have periodic and
quasiperiodic . motion, depending on the initial
conditions, and for four vortices we can have
periodic, quasiperiodic, or weakly chaotic motion.

Remarks

(1) The nonintegrability of the 4-vortex system
was also proved for configurations of nonidentical
vortices. Koiller and Carvalho (1989) gave an
analytical proof forbib};l = Ty and I's=I4=¢0<«
e € 1. Moreover, Castilla et al. (1993) considered
the case: I'1 =T, =I3=1and 'y =e.

(it} Due to the translational and rotational
symmetries of H,, there are some analogies between
the N-vortex problem and the N-body problem,

0<T'y<Iy
I'=T
(@) (b)
T >[ Tl
L=l
° |
NIRR\J

(©) (d)
Figure 6(a-d) For N =2 the vortex dipole exhibits a synchro-
nous and the orbits are in general circular orbits, with the
exception of the case (d) for which 'y = —T'> and the circular
orbit degenerates into a line (or a circle of infinite radius).
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especially for what concerns configurations of
relative equilibria (see Albouy (1996) and Glass
(2000)). A relative equilibrium is a vortex (or mass)
configuration that moves without change of shape
or form, that is, a configuration which is steadily
rotating or translating. A few examples are vortex
polygons (see Figure 7) like the ones studied by

Thomson, Mayer, Yarmchuk—Gordon—Packard,
Boatto—Cabral (2003), Cabral-Schmidt (1999/
2000), Dritschel-Polvani (1993), Lim—Montaldi-

Roberts (2001), Sakajo (2004). For an exhaustive
review on_relative equilibria of vortices, see the
article by Aref et al. (2003). We shall discuss about
stability of polygonal vortex configuration in the
following subsection.

(i1} As shown by Kimura (1999) in a beautiful
geometrical formalism, on the unit sphere (§?) and
on the Hyperbolic plane (H?), the vortex Hamilto-
nians [15] are

H, = ——ZF Islog(1 —cospas) on S?
a#ﬂ
h pop — 1
:7—Zra slo coshpg T on H?
Ly cos Pap +
where

COS Pag = €0s B, cos g

4 sin 0, sin g cos(dn — ¢g) on'S*
cosh p,g = cosh 8, cosh g
+ sinh 6, sinh g cos(¢, — ¢5) on H*

On §%,0, and ¢, are, respectively; the co-latitude
and the longitude of the a-vortex; «=1,...,N. We

I'y

(a) (b)
foo3s Figure 7 Polygonal configuration of vortices: (a) planar
configurations and (b) configurations of vortex rings on a sphere,
with and without polar vortices.

can define canonical variables g, and p, on $? and
H?, respectively, as

Do = o on 52
go =Tycoshf,, p,=d¢s on H?

go =y cos by,

Montaldi et al. (2002) studied vortex dynamics on a
cylindrical surface, and  Souliere and Tokieda
(2002) considered vortex dynamics on surfaces
with symmetries.

(iv) As we shall see in the section on point vortex
motion, it is sometimes useful to employ the
complex analysis formalism. Then the variables of
interest are z, =Xo +1ya,@«=1,..., N, and its con-
jugate Z,, the Hamiltonian [15] takes the form

H, = ——ZF I'slog |zs — 2l
e

and the equations of motions become

: N
. 1 2o — %
G = — LaT 6

B N
27 pjad1 |2 — 24l

a=1,...

[16]

(v) Equation [14] can we rewritten in a more
compact form as

dX

— JVxH, 17]

where

X= (qlv"'quvplv"'va)

< d g 0 d )
Vx=|—, - cym—=—, .., —
Oq1 Ogn  Op1 OpN
O 1
=5 o)
I being the N x N identity matrix.

(vi) How close is the point-vortex model to the
original Euler equation? Point-vortex systems repre-
sent discrete solutions of the Euler equation in a
weak” sense — see both the book and the article by

Marchioro and Pulvirenti (1993, 1994). These
authors proved that the Euler dynamics is “similar”
to the vortex dynamics in which the vortices are
localized in very small regions, and the vortex
intensities are the total vorticities associated to
such small regions. In particular, let us consider a
vorticity field with compact support on a family of
e-balls, that is,

N
72 : €
= w;

i=1
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Figure 8 In the limit ¢— 0, the dynamics of the center of
vorticity of a vortex e-ball is approximated by the dynamics of a
point vortex.

with support of wf contained in the ball of center x;
(independent of ¢) and radius e. Furthermore let us

assume that
/ widr =T
[r—r;|<e

with the v; independent of e. Then in the limit e — 0
the dynamics of the «center of vorticity
B.(t)= [rw.r,t)dr, of a given e-ball, “converges”
to the motion of a single point vortex (see Figure 8).
This result is important to illustrate as vortex
systems provide both a useful heuristic tool in the
analysis of the general properties of the solutions of
Euler’s equations (Poupaud 2002, Schochet 1995),
and a useful starting point for the construction of
practical algorithms for solving equations in specific
situations. In particular, it provides a theoretical
justification to the vortex method previously intro-
duced by Carnevale et al. (1992). These authors
constructed a numerical algorithm to study turbu-
lence decaying in two dimensions. Their vortex
method greatly simplifies fluid simulations as basi-
cally it relies on a discretization of the fluid into
circular patches. The dynamics of patches is given
by the centers of vorticity, which interact as a point-
vortex system, endowed with a rule dictating as
patches merge (see Figure 9).

Stability of a Vortex Ring

As mentioned in Introduction, the study of vortex
relative equilibria has a long history. Kelvin showed
that steadily rotating patterns of identical vortices

2a1$ @ 7

>
O» —> Y -

Figure 9 In Carnevale ef al. (1992) the fluid is modeled by a
dilute vortex gas with density p and typical radius a. The
dynamics is governed by the point-vortex dynamics of the disk
centers, each disk corresponding to a point vortex of intensity
T = néed®, Where &g plays the role of a vorticity density. Two
vortices or radius a; and a; merge when their center-to-center
distance is less or equal to the sum of their radii, a; + a;. Then a
new vortex is created and its radius az is given by
as—(at + ad)"/".

arise as solutions of a variational problem in which
the interaction energy (vortex Hamiltonian) is
minimized subject to the constraint that the angular
impulse be maintained (see Aref (2003). In 1883,
while studying and modeling the atomic structure,
J J Thomson investigated the linear stability of co-
rotating point vortices in the plane. In particular, his
interest was in configurations of identical vortices
equally spaced along the circumference of a circle,
that is, located at the vertices of a regular polygon
(see Figure 7). He proved that for six of fewer
vortices the polygonal configurations are stable,
while for seven vortices — the Thomson heptagon —
he erroneously concluded that the configuration is
slightly unstable. It took more than a century to
make some progresses on this problem. D G Dritschel
(1985) succeeded in solving the heptagon mystery
for what concerns its linear stability analysis, leaving
open the nonlinear stability question: he proved that
the Thomson heptagon is neutrally stable and that
for eight or more vortices the corresponding poly-
gonal configurations are linearly unstable. Later on
in-1993, Polvani and Dritschel (1993) generalized
the techniques used in Dritschel (1985) to study the
linear ‘stability of a “latitudinal” ring of point
vortices on the sphere, as a function of the number
N of vortices in the ring, and of the ring’s co-latitude
§ (see Figure 10). They proved that polygonal
configurations are more unstable on the sphere
than in the plane. In particular, they showed that
at the pole, for N < 7 the configuration is stable, for
N=7 it is neutrally stable and for N >7 it is
unstable. By means of the energy momentum
method (Marsden—-Meyer—Weistein reduction), ] E
Marsden and S Pekarsky (1998) studied the non-
linear stability analysis for the integrable case of
polygonal configurations of three vortices of arbi-
trary vorticities (I';, 'y and I'3) on the sphere, letting
open the stability analysis for nonintegrable vortex
systems (N > 3). In 1999H E Cabral and D S
Schmidt completed the linear and nonlinear stability

=

Figure 10 Latitudinal ring of vortices. Reproduced from SIAM
Journal of Applied Mathematics.
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analysis at once for polygonal configurations in the
plane. In 2003 Boatto and Cabral studied the
nonlinear stability of a ring of vortices on the
sphere, as a function of the number of vortices
N and the ring colatitude 6. Boatto and Simé (2004)
generalized the stability analysis to the case of a ring
with polar vortices and of multiple rings, the key
idea being, as we shall discuss in this section, the
structure of the Hassian of the Hamiltonian.

How to infer about linear and nonlinear stability
of steadily rotating configurations?

Let us restrict the discussion to a polygonal ring of
identical vortices on a sphere as illystrated in
Figure 7 (Boatto and Cabral 2003, Boatto and
Simé 2004). The reasoning is easily generalized for
the planar case. The case of multiple rings is
discussed in great detail in Boatto and Simé
(2004). A polygonal ring is a relative equilibrium
of coordinates  X(¢#)={(q1(¢), ..., qn(t), p1(t), ...,
pn(2)), where

qa(t) = ¢a(t) =wt + ¢oa
pa(t) =po =Tcosf, a=1,....,N

w=(N—Dpo/r2 1o =+/1—p2/T2,¢oo and Gpa =10,
being the initial longitude and co-latitude of the ath
VOrtex.

Theorem 1 (Spherical case) (ﬁgoéotto and’ Simd
2004). The relative equilibrium (18] is (linearly and
nonlinearly) stable if

—4(N —1)(11 — N) + 24(N =1)#*
+2N? 14 31N

18]

<0 [19]

and it is unstable if the inequality is reversed.

Remarks

(i) By Theorem 1 a vortex polygon, of N point
vortices, is stable for 0° <0, < ¢% and (180° — %) <

8, < 180°, where #7 =arcsin(r}) and
7—N
rZZ < — for N odd
N2—8N+38
2 . &y °- T °
e < AN 1) for N even

where r£ = sing.

i) Theorem 1 includes at once the results of
Thomson (1883), Dritschel (1985), and Polvani and
Dritschel (1993) (and other authors which have been
working in the area (Aref et al. 2003)). We recover
the planar case by setting r,=0 in eqn [19],
deducing that stability is guaranteed for N < 7.

To prove Theorem 1 it is useful to consider the
Hamiltonian equations as in eqn [17]. The first step
is to change of reference frame: view the dynamics
in a frame co-rotating with the relative equilibrium
configuration. In the co-rotating reference system,
the Hamiltonian takes the form

H=H+t+wM

where M is the momentum of the system, and H and
w are, respectively, the Hamiltonian and the rota-
tional frequency of the relative equilibrium in the
original frame of reference. In the new reference
frame, the relative equilibrium becomes an equili-
brium, X*, and the standard techniques can be used
to study its stability.

To study linear stability, the relevant equation is
dAX
—5 = /sax 20]

where X=X*+ AX, and § is the Hessian of H
evaluated at the equilibrium X*. Then linear (or
spectral). stability is deduced by studying the
eigenvalues of the matrix [S (spectral stability). For
nonlinear stability we make use of a sufficient
stability criterion due to Dirichlet (1897) (Boatto
and Cabral 2003):

Theorem 2 Let X* be an equilibrium of anauto-
nomous system of ordinary differential equations

dX
G-,

that is, f(X*)=0. If there exists a positive (or
negative) definite integral F of the system [21] in a
neighborhood of the equilibrium X*, then X* is
stable.

Q cR™ 21]

In our case the Hamiltonian itself is an integral of
motion. Then by studying definiteness of its Hes-
sian, S, evaluated at X*, we infer minimal stability
intervals in # and N. Qg}talls are given in Boatto and
Cabral (2003) and Boatto and Simé (2004). The
proof is mainly based on the following
considerations:

1. Since S is a symmetric matrix it is diagonaliz-
able, that is, there exists an orthogonal matrix C
such that C'SC =D, where D is a diagonal matrix,
D =diag()\, ..., An). Furthermore, the matrix C can
be chosen to leave invariant the symplectic form
(equivalently J=C'JC). Then by the canonical
change of variables Y =CTX eqn [20] becomes

dAY

—— = /DAY

[22]
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where Y:((~]1,...,1~]N,[~71,...,[~7N) and ((~]]‘,[~77‘),

j=1,..., N, are pairs of conjugate variables. Equa-
tion [22] can be rewritten as

d*Ag; B

7= MNeNAG,

j=1,...,N

2. When evaluated at the equilibrium X*, the
Hessian S takes the block structure

T Q O

5=(6 9
where the matrices Q and P are symmetric circulant
matrices, that is, (N x N) matrices of the form

a1 an aN
aN aN-1

A=| . . 23]
ay das ... ay

Circulant matrices are of special interest to us
because we can easily compute their eigenvalues
and eigenvectors for all N. In fact, it is immediate to
show that:

Lemma 3 Al
eigenvalues

circulant matrices [23] have

N
A= Zakrf’l, j=1,...,N
k=1

and corresponding  eigenvectors v;=(1,7,...,
NN i=1,.. N, where r;= exp (2n(j — 1)/N) are
solutions of N =1.

Passive Tracers in the Velocity Fields of N Point
Vortices: The Restricted (N + 1)-Vortex Problem

The terminology “restricted (N -+ 1)-vortex pro-
blem” is used in analogy with celestial mechanics
literature, when one of the vorticities is taken to be
zero. The zero-vorticity vortex does not effect the
dynamics of the remaining N-vortices. For this
reason, it is said to be passively advected by the
flow of the remaining N-vortices and in the fluid
mechanics’ literature the terminology passive tracer
is also employed. The tracer dynamics is given by
the Hamiltonian equations [8]. Notice that in
general ‘the -Hamiltonian ¥ is time dependent,
through the vortex variables #;,j=1,..., N, that is,

U(r,t) = VU(r,r1(2),...,7n(2))

and (gq,p) = (x,y) play the role of conjugate canoni-
cal variables. There is an extensive literatyre on the
subject both from a theoretical (see, e.g., Boatto and
Sim6 (2004) and Newton (2001)) and an experi-
mental (van Heijst 1993, Ottino 1990} points of

view. As discussed in the previous section, there are
some vortex configurations, such as the polygonal
ones, for which vortices undergo to a periodic
circular motion. Then by viewing the dynamics in
a reference frame co-rotating with the vortices the
tracer Hamiltonian is manifestly time independent
and, therefore, integrable — since it reduces to a
Hamiltonian of one degree of freedom. In such an
occurrence, tracer trajectories form'a web of homo-
clinic and heteroclinic orbits. An interesting theore-
tical problem is to study how the tracer transport
properties (i.e., existence of barriers to transport,
diffusion etc.) are effected by perturbing the poly-
gonal vortex configuration, that is, by introducing in
¥ a “genuine” time dependence (periodic, quasiper-
iodic, or chaotic) (see, e.g., Boatto and Pierrehum-
bert (1999), ‘Rom-Kedar, Leonard and Wiggins
(1990), Kuznetsov. and Zaslavsky (2000), and
Newton (2001}). Furthermore, in the lab experi-
ments, color dyes, which monitor the flow velocity
field, are often used as the experimental equivalent
of tracer particles. In this contest we would like to
stress the striking resemblance between theoretical
particle trajectories, deduced from point vortex
dynamics, and the actual dye visualizations observed
by van Heijst and Flor for vortex dipoles in a
stratified fluid (see Figures 11 and 12) (van Heijst
1993). Similarly, tripolar structures have been
observed both in lab experiments (see Figure 13)
and in nature (see Figure 14). Recently, the Danish
group of Jansson-Haspang-Jensen—-Hersen-Bohr has
observed beautiful rotating polygons, such as
squares and pentagons, on a fluid surface in the
presence of a rotating cylinder (see Figure 15).

Point Vortex Motion with Boundaries

In comparison with the extensive literature on point
vortex motion in unbounded domains, the study of
point vortex motion in the presence of walls is modest.
There is, however, a general theory for such problems,
and some recent new developments in this area has
resulted in a versatile tool for analyzing point vortex
motion with boundaries. Both Saffman and Newton
(Newton 2001} contain chapters on point vortex
motion with boundaries, the latter also featuring a
detailed bibliography. The reader is referred there for
standard treatments; here, we focus on more recent
developments of the mathematical theory.

The Method of Images

When point vortices move around in bounded
domains, it is clear that the motion is subject to
the constraint that no fluid should penetrate any of
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the boundary walls of the domain. If # denotes the
local normal to the boundary walls, the boundary
condition on the velocity field u is therefore # - =0
everywhere on the walls. Another way to say the
same thing is that all the walls must be streamlines
so that the streamfunction, ¢ say, must be constant
on any boundary wall.

A classical approach to bounded vortex motion is
the celebrated method of images — a rather special
technique limited to cases where the domain of
interest has certain geometrical symmetries so that
an appropriate distribution of image vorticity can be
ascertained, essentially by inspection. This image
vorticity is placed in nonphysical regions of the
plane in order to satisfy the boundary conditions
that the walls act as impenetrable barriers for the
flow.

The simplest example is the motion of a single
vortex next to a straight plane wall of infinite
extent. Suppose the wall is along y=0 in an (x,y)-
plane and that the fluid occupies the upper-half
plane. If a circulation-I' vortex is at the complex
position zyp =xg + iyp, the solution for the stream-
function is
2—2

Z—20

[24]

r
P(2,7) = fﬂlog

where z=x+1iy. This has a single logarithmic
singularity in the upper-half plane at z=zy

Figure 11 Test-particle trajectories: on the left, theoretical
trajectories, from the point-vortex model; on the right, a top view
of a laboratory experiment in stratified flows. Reproduced from
van Heijst GJF and Flor JB (1989) Dipole formation and
collisions in a stratified fluid. Nature 340: 212-215, with
permission from Nature Publishing Group.

Figure 12 A frontal collision of two dipoles as observed in a
stratified fluid: after a so called “partner-exchange” two new
dipoles are formed. Reproduced from van Heijst GJF and Flor JB
(1989) Dipole formation and collisions in a stratified fluid. Nature
340: 212-215, with permission from Nature Publishing Group.

Figure 13 A tripolar vortex structure as observed in a rotating
stratified fluid. Reproduced from van Heijst GJF, Kloosterziel
RC, and Williams CWM (1991) Laboratory experiments on the
tripolar vortex in a rotating fluid. Journal of Fluid Mechanics 225:
301-331, with permission from Cambridge University Press.
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Figure 14 |Infrared image taken by NOAA11 satellite on
January 4 1990 (0212 UT) shows a tripolar structure in the Bay
of Biscay. The central part of the tripole measures about 50-70
km and rotates clockwise, whereas the two satellite vortices
rotate anticlockwise. The dipoles persisted for a few days before
it fell apart. Reproduced from Pingree RD and Le Cann B,
Anticyclonic Eddy X91 in the Southern Bay of Biscay, Journal of
Geophysical Research, 97: 14353-14362, May 1991 to Febru-
ary 1992. Copyright (1992) American Geophysical Union.
Reproduced/modified by permission of American Geophysical
Union.

Figure 15 The free surface of a rotating fluid will, due to the
centrifugal force, be pressed radially outward. If the flow is driven
by rotating the bottom plate, the axial symmetry can break
spontaneously and the surface can take the shape of a rigidly
rotating polygon. With water Jansson-Haspang—-Jensen—Her-
sen—Bohr have observed polygons with up to six corners. The
rotation speed of the polygons does not coincide with that of the
plate, but it is often mode-locked, such that the polygon rotates
by one corner for each complete rotation of the plate.
Reproduced from Jansson TRN, Haspang M, Jensen KH,
Hersen P, and Bohr T (2005) Rotating polygons on a fluid
surface. Preprint, with permission from T Bohr.

(corresponding to the point vortex) and it is easily
checked that v=0 on y=0. Therefore, no fluid
penetrates the wall. Equation [24] can be written as

_ r r _
¥(z.7) = —5-loglz — 20| +5-loglz —Zo|  [29]

which is the sum of the streamfunction due to a
point vortex of circulation I' at zg=xp + iyy and
another, one imagines, of circulation —I' at Zg=
xo — 1yp. In this case, the image vortex distribution is
simple: it is just the second vortex sitting at the
reflected point in the wall. The method of images
can be applied to flows in other regions bounded by
straight line segments (e.g., wedge regions of various
angles (Newton 2001)).

A variant of the method of images is the Milne—
Thomson circle theorem relevant to planar flow
around a _circular cylinder. Given a complex
potential w(z) with the required singularities in the
fluid region exterior to the cylinder, but failing to
satisfy the boundary condition that the surface of
the cylinder is a streamline, this theorem says that
the correct potential W(z) is

W(z) = w(z) + w(a*/z)

where a is the cylinder radius and 7(z) is the
conjugate function to w(z). It is easy to verify that
the imaginary part of W(z), that is, the streamfunc-
tion, is zero on |z =a. The second term, w(a?/z),
produces the required distribution of image vorticity
inside the cylinder. A famous example is the Foppl
vortex pair which is the simplest model of the
trailing vortices shed in the wake of a circular
aerofoil traveling at uniform speed.

[26]

Kirchhoff-Routh-Lin Theory

The most important general mathematical tool for
point vortex motion in bounded planar regions is
the Hamiltonian approach associated with the
names of Kirchhoff (1876} and Routh (1881),
who developed the early theory. Lamb gives an
account of their original work. It is now known
that the problem of N-vortex motion in a simply
connected domain is a Hamiltonian dynamical
system. Moreover, the Hamiltonian has simple
transformation properties when a given flow
domain of interest is mapped conformally to
another — a result originally due to Routh. A
formula for the Hamiltonian can be built from
knowledge of the instantaneous Green’s function
associated with motion of the point vortex in the
simply connected domain D. In fact, [24] is
precisely the relevant Green’s function when D is
the upper-half plane.
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Much later, in 1941, Iljliaﬁs(l%l) extended these
general results to the case of multiply connected
fluid regions. To visualize such a region, think of a
bounded region of the plane containing fluid but
also a finite number of impenetrable islands whose
boundaries act as barriers for the fluid motion. If the
islands are infinitely thin, they can be thought of as
straight wall segments immersed in the flow (see
later examples). Lin (1941) showed that both the
Hamiltonian structure, and the transformation
properties of the Hamiltonian under conformal
mapping, are preserved in the multiply connected
case.

Lin’s Special Green’s Function

Since Lin’s result subsumes the earlier simply
connected studlesb we now outline the key results
as presented in Lin (1941). Consider a fluid region
D, with outer boundary Cy and M enclosed islands
each having boundaries {Cj|j=1,..., M}. Lin intro-
duced a special Green’s function Gix,y;x0,Yo)
satisfying the following properties:

1. the function

1
g, y;x0,¥0) = —G(x,y;%0,¥0) — ﬂlog ro  [27]

is harmonic with respect to (x,y) throughout
the region D including at the point (xg, yg). Here,

m—wx o) + (v — w0

2. if 9G/On is the normal derivative of G on a curve
then

G(x, y,xo,yo) A, onCyk=1,.... M

j'{ —ds— k=1 M
Ck

where ds denotes an element of arc and {A;} are
constants;
3. Glx,y;x0, y0) =0 0on Cp.

Flucher and Gustafsson (1997) refer to this G as the
hydrodynamic Green’s function. (In fact, it coincides
with the modified Green’s function arising in
abstract potential theory — a function that is dual
to the usual first-type Green’s function that equals
zero on all the domain boundaries.) On use of G,
Lin established the following two key results:

28]

Theorem 4 If N wvortices of strengths {I'p|k=
1,...,N} are present in an incompressible fluid at
the points {(xp, yp)lk=1,...,N} in a general multi-
ply connected region D bounded by fixed bound-
aries, the stream function of the fluid motion is
given by

WY, y; x8, Vi)

N
= do(x,y) + > TeG(x, ;26 i)
=1

[29]

where Yo(x,vy) is the streamfunction due to outside
agencies and is independent of the point vortex
positions.

Theorem 5 For the motion of vortices of strengths
{Tx|k=1,...,N} in a general region D bounded by
fixed boundaries, there exists a Kirchhoff-Routh
function H{{xy,y:}), depending on the point vortex
positions, such that

dxk oH dyk _Qf{ [30}
L dz ayk7 ar de oxy
where H({x,yr}) is given by
N
H({xg, ye}) =Y Titbo(c, ye)
k=1
N
+ ) Tl Tk Gy Vi %t Vo)
kg1
ky>ky
1 X
*zzrig(xk,yk;xk,yk) 31]

k=1

In rescaled coordinates (xp,Tyy:), [30] is a Hamil-
tonian system in canonical form. For historical
reasons, H is often called the Kirchhoff~Routh
path function. Analyzing the separate contributions
to the path function [31] is instructive: the first term
is the contribution from flows imposed from outside
(e.g., background flows and round-island circula-
tions), the second term is the “free-space” contribu-
tion (it is the relevant Hamiltonian when no
boundaries are present) while the third term encodes
the effect of the boundary walls (or, the effect of the
“image vorticity” distribution discussed earlier).

bib0115

Lin (1941) went on to show that, with the
Hamiltonian in some D given by H in [31], the
Hamiltonian relevant to vortex motion in another
domain obtained from D by a conformal mapping
z(¢) consists of [31] with some simple extra additive
contributions dependent only on the derivative of
the map z(¢) evaluated at the point vortex positions.

Flucher and Gustafsson (1997) also introduce the
Robin function R(xg, yg) defined as the regular part
of the above hydrodynamic Green’s function eval-
nated at the point vortex. Indeed, R(xg,yo) =
g(xo0, Yo;x0,y0), where g is defined in [27]. An
interesting fact is that, for single-vortex motion in
a simply connected domain, R(xy,yy) satisfies the
quasilinear elliptic Liouville equation everywhere in
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D with the boundary condition that it becomes
infinite everywhere on the boundary of D.

By combining the Kirchhoff-Routh theory with
conformal mapping theory, many interesting pro-
blems can be studied. What happens, for example, if
there is a gap in the wall of Figure 16? In recent
work, Johnson and McDonald (2005} show that if
the vortex starts off, far from the gap, at a distance
of less than half the gap width from the wall, then it
will eventually penetrate the gap. Otherwise, it will
dip towards the gap but not go through it. The
trajectories are shown in Figure 17.

Unfortunately, Lin did not provide any explicit
analytical expressions for G in the multiply con-
nected case. This has limited the applicability of his
theory beyond fluid regions that are anything other
than simply and doubly connected. Recently, how-
ever, Lin’s theory has recently been brought to
implementational fruition by Crowdy and Marshall

Point vortex, circulation I"

7N
y

Wall

Image vortex, circulation-T"

Figure 16 The motion of a point vortex near an infinite straight
wall. The vortex moves, at constant speed, maintaining a
constant distance from the wall. Other possible trajectories are
shown; they are all straight lines parallel to the wall. The motion
can be thought of as being induced by an opposite-circulation
“image” vortex at the reflected point in the wall.
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Figure 17 Distribution of point vortex trajectories near a wall
with a single gap of length 2. There is a critical trajectory which,
far from the gap, is unit distance from the wall.

(2005), who, up to conformal mapping, have
derived explicit formulas for the hydrodynamic
Green’s function in multiply connected fluid regions
of arbitrary finite connectivity. Their approach
makes use of elements of classical function theory
dating back to the work of Poincare, Schottky, and
Klein (among others). This allows new problems
involving bounded vortex motion to be tackled. For
example, the motion of a single vortex around
multiple circular islands has been studied in Crowdy
and Marshall (2005), thereby extending recent work
on the two-island problem (Johnson and McDonald
2005). If the wall in Figure 17 happens to have two
(or more) gaps, then the fluid region is multiply
connected. The two-gap (doubly connected) case
was recently solved by Johnson and McDonald
(2005) using ‘Schwarz=Christoffel maps combined
with elements of elliptic function theory (see
Figure 18). Crowdy and Marshall have solved the
problem of an arbitrary number of gaps in a wall by
exploiting the new general theory presented
in Crowdy and Marshall (2005) (and related works
by the authors). The case of a wall with three gaps
represents a triply connected fluid region and the
critical vortex trajectory is plotted in Figure 19.
Point vortex motion in bounded domains on the
surface of a sphere has received scant attention in

-0.5

-1

-1.5

-2

-3 —2 -1 0 1 2 3

Figure 18 The critical trajectory when there are two symmetric

gaps in a wall. The flyig, region is now doubly connecteg, This

problem is solved in Johnson and McDonald (2005) and Crowdy
and Marshall (2005).

o) P

-1

-2 L
-5 0 5
Figure 19 The critical vortex trajectories when there are three
gaps in the wall. This timg,the fluid region is triply connected.
This problem is solveg,in Crowdy and Marshall (2005) using the
general methods in Crowdy and Marshall (2005).
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the literature, although — Kidambi and Newton

(2000) and Newton (2001) have recently made a
contribution. Such paradigms are clearly relevant to
planetary-scale oceanographic flows in which ocea-
nic eddies interact with topography such as ridges
and land masses and deserve further study.
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