
18.325 Vortex dynamics
Equation of motion of a line vortex

In most textbooks, the law of motion of a line vortex is not derived sys-
tematically. Indeed, it is usually stated as being obvious (for example, as a
consequence of the Helmholtz laws) that a line vortex moves with the local
“non-self-induced” velocity field – that is, the non-singular part of the veloc-
ity field once the line vortex singularity has been subtracted. However, since
the velocity and vorticity are not strictly defined at the vortex singularity, it
is difficult to argue that the line vortex corresponds to a vortex line that gets
convected with the (non-self-induced) flow. It is satisfying to see a more pre-
cise derivation of this important result based on an invocation of Newton’s
second law. The monograph by Saffman (1992) presents a similar argument
(using real analysis).

Let a point vortex of (constant) circulation Γ be at position α(t) in an ideal
fluid with unit density. Let Cε denote a circular contour, centred at α(t),
with radius ε � 1. Of course, the centre of the circle Cε is moving with
(complex) speed dα/dt.

Euler’s equation was derived by insisting that Newton’s second law holds
at all points of the flow; if there are isolated singularities in the flow, it is
necessary to enforce that the same law holds at those points too.

To do this, we insist that, as ε → 0, the force exerted by the fluid across
Cε on the fluid inside Cε must equal the net momentum flux into the region
enclosed by Cε. Mathematically, this means that

lim
ε→0

[

−

∮

Cε

pn ds

]

= lim
ε→0

[
∮

Cε

u (u − dα/dt) .n ds

]

(1)

where p is the fluid pressure and ds denotes an element of arclength. The
left side of this equation is the force exerted across Cε on the fluid inside the
contour; the right side is the flux of momentum into the interior of Cε. It
should be noted that, on the right side, we have taken into account the fact
that Cε is itself moving at speed dα/dt.

We will now rewrite (1) in complex form. Let the complex number α(t)
now denote the complex number corresponding to the vector α(t). Let the
complex potential for the flow be w(z, t). The complex normal is given by
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n = idz/ds so that n ds takes the form idz in complex form. Thus (1)
assumes the form

−

∮

Cε

pidz =

∮

Cε

(

dw

dz

)

Re

[(

dw

dz
−

dᾱ

dt

)

idz

]

(2)

where we have used the fact that

a.b = Re[ab] (3)

and, in obvious notation, a is the complex number corresponding to the
vector a. The unsteady version of Bernoulli’s theorem, written in terms of
the complex potential, asserts that the fluid pressure is given by the relation

p +
∂

∂t

(

w + w

2

)

+
1

2

∣

∣

∣

∣

dw

dz

∣

∣

∣

∣

2

= H(t) (4)

where H(t) is a function of time, but not space.
It follows that (2) is

∮

Cε

[

∂

∂t

(

w + w

2

)

+
1

2

∣

∣

∣

∣

dw

dz

∣

∣

∣

∣

2

− H(t)

]

idz

=

∮

Cε

(

dw

dz

)[(

dw

dz
−

dᾱ

dt

)

idz

2
−

(

(

dw

dz

)

−
dα

dt

)

idz̄

2

]
(5)

The key equation (1) therefore simplifies to

lim
ε→0

[
∮

Cε

∂

∂t

(

w + w

2

)

idz

]

=
i

2

dα

dt
I1 −

i

2

dᾱ

dt
I2 −

i

2
I3 (6)

where

I1 = lim
ε→0

∮

Cε

dw

dz
dz,

I2 = lim
ε→0

∮

Cε

dw

dz
dz̄,

I3 = lim
ε→0

∮

Cε

(

dw

dz

)2

dz.

(7)
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The complex potential has the form

w(z, t) = −
iΓ

2π
log(z − α(t)) + W(z, t) (8)

where W(z, t) is analytic at z = α(t). It follows that

∂w

∂t
=

iΓ

2π

dα/dt

z − α
+

∂W

∂t
,

dw

dz
= −

iΓ

2π

1

z − α
+

dW

dz
. (9)

Now observe that

lim
ε→0

∮

Cε

∂w

∂t
dz =

(

iΓdα/dt

2π

)

2πi (10)

by the residue theorem and the fact that

lim
ε→0

∮

Cε

∂W

∂t
dz = 0 (11)

owing to the fact that the integrand is uniformly bounded on Cε. Note also
that

lim
ε→0

∮

Cε

∂w

∂t
dz̄ = lim

ε→0

∮

Cε

[

iΓ

2π

dα/dt

z − α
+

∂W

∂t

]

−ε2dz

(z − α)2
(12)

where we have used the fact that, on Cε,

dz̄ =
−ε2dz

(z − α)2
(13)

since Cε is given by the equation (z − α)(z̄ − ᾱ) = ε2. Therefore

lim
ε→0

∮

Cε

∂w

∂t
dz̄ = lim

ε→0

(

−2πiε2
∂2W

∂t∂z

∣

∣

∣

∣

α

)

= 0. (14)

Now consider the evaluation of I1, I2 and I3; all of which can be performed
using the residue theorem. Direct application of the residue theorem leads
to

I1 = Γ. (15)

Exploiting relation (13), the residue theorem is then applicable to the eval-
uation of I2 and leads to the result I2 = 0. Finally, direct use of the residue
theorem shows that

I3 = 2Γ
dW

dz
(α). (16)
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Substituting these results into (6) gives the final result

dα

dt
=

(

dW

dz

)
∣

∣

∣

∣

α

(17)

or, on taking the complex conjugate,

dᾱ

dt
=

dW

dz

∣

∣

∣

∣

α

(18)

This says that the line vortex moves with the local non-self-induced velocity
(the finite part of the velocity field at the point vortex position).
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