
25. Strassen’s Fast Multiplication of Matr ices Algor ithm 
 

1. Introduction 
 

 Suppose we want to multiply two n by n matrices, A and B. 
 
 Their product, AB, will be an n by n matrix and will therefore have n2 elements.  
Each one of these elements is naturally expressed as the sum of n products, each of an 
element of A with one of B. Thus we have 
 

(AB)jk   =   Σs=1
s=n A jsBsk, 

 
and the number of multiplications involved in producing the product in this way is n3. 

 
 In fact, a matrix product of this kind can be obtained using a smaller number of 
operations, and we will describe how this can be done. 
 
 We will also discuss some curious spreadsheet algorithms for manipulating 
matrices.  
 

Thus, if we produce the product AB in the usual manner on a spreadsheet with no 
additional work we can obtain AkB as well, for any k we choose. 
 
 Also, with one easy instruction, whose entry is similar to applying the formula for 
computing the determinant of a 2  by 2 matrix (along with some copying), we can 
compute the determinant of any square matrix A of any size, and even obtain all the 
cofactors of the elements A. 
 

2. Fast Matr ix Multiplication; Par titioning Matr ices 
 

We will describe an algorithm (discovered by V.Strassen) that allows us to 
multiply two n by n matrices A and B, with a number of multiplications (and additions) 
which is a small multiple of n(ln 7)/(ln 2), when n is of the form 2k.  

 
The algorithm is based upon three ideas.  
 
The first idea is that of “par titioning matr ices”  which in our context is: 
 
The multiplication of 4 by 4 matrices A and B is equivalent to the multiplication 

of a pair of 2 by 2 matrices whose elements are each 2 by 2 matrices. 
 
Explicitly, if we describe A and B as 
 

a11   a12   a13   a14  b11   b12   b13   b14 
a21   a22   a23   a24  b21   b22   b23   b24 
a31   a32   a33   a34      and b31   b32   b33   b34 



            a41   a42   a43   a44                     b41   b42   b43   b44 
 

Then their product is exactly the same as the product of the matrices 
 

A11   A12   B11   B12 

A21   A22  and B21   B22 

 

where we have 
 
 a11    a12  a31    a32          a13    a14            a33    a34 
A11 =   a21    a22         A21 =   a41    a42     A12 =   a23    a24     A22  =  a43    a44, 
 
and the same for B. 
 
 When we perform matrix multiplication here we take the dot products of the rows 
of A with the columns of B. In doing so we sum over an intermediate variable.  
 

The difference between the normal representation of the product and the 
“partitioned representation as a 2 by 2 product of 2 by 2 matrices is the difference 
between representing the indices to be summed over as 1 2 3 and 4, or as 11 12 21 and 
22. 
 
 This is akin to representing numbers from 1 to 4 either by a pair of binary digits 
or as one digit mod 4. When we do the multiplication, as long as we sum over all possible 
middle indices, it makes no difference how we choose to represent them. 
 
 And of course the same thing is true for matrices whose dimensions are 2k by 2k. 
We can represent the indices either as integers from 1 to 2k or as k-tuples, each element 
of which is 1 or 2.  
 
 And with the latter representation we can interpret matrix multiplication as the 2 
by 2 product of 2k-1 by 2k-1  matrices each one of which is a 2 by 2 product of 2k-2 by 2k-2  
matrices, and so on.  
 
 The consequence we draw from this fact is: if we can multiply 2 by 2 matrices 
using only 7 multiplications instead of the usual 8, we can parlay that into multiplying 4 
by 4 matrices using 7 multiplications of 2 by 2 matrices each of which requires 7 
multiplications of numbers, for a total of 49 multiplications. 
 
 Furthermore, by iterating this fact, we can multiply 2k by 2k matrices with 7k 
multiplications of numbers, so long as we can handle 2 by 2 matrices with 7 
multiplications. 
 
 You might note here that this kind of matrix partitioning can be done whenever 
you have n by n matrices and n is the product of a and b. You can then write the product 



of n by n matrices as the product of a by a matrices each one of which is a b by b matrix, 
again by labeling the indices accordingly.     
 

2. Representing a Matr ix Product as a Single Polynomial 
 

 From now on then we will consider the problem of computing the 4 entries in the 
product of two 2 by 2 matrices. 
 
 Explicitly, given 2 by 2 matrices with elements aij and bjk

  we want to compute the 
four combinations 
 

a11b11 + a12b21,  a11b12 + a12b22,  a21b11 + a22b21,  and  a21b12 + a22b22. 
 

 The second idea here is that we will get a better  grasp of the problem if we 
combine these four  combinations into one entity. And we can do this by multiplying 
each one by an indeterminate (or  var iable) and adding them up. 
 
 The result will be a polynomial, and our task will be both to compute this 
polynomial from the a’s and b’s using 7 multiplications, and to find the coefficients of 
our indeterminates in the polynomial. 
 
 And here is where we run into amazing luck. If we call our indeterminates zkj 

 and 
multiply the combinations above by z11, z21, z12 and z22 respectively, our polynomial can 
be written as  
 
a11b11z11 + a12b21z11 + a11b12z21 + a12b22z21 + a21b11z12 + a22b21z12 + a21b12z22 + a22b22z22 
 
which is 

ΣΣΣΣj ,s,k=1
2 aj sbskzkj. 

 
 Our luck is the fact that this polynomial has quite a bit of symmetry.  
                 
 In particular, we can interchange the subscripts 1 and 2 everywhere, and this 
combination does not change. Which is to say that for each term (for example the first 
term) there is another which is its image under changing all the indices (here the last 
term). 
 
 Second, we can permute the indices j s and k, replacing j by s, s by k and k by j, 
without changing this polynomial, and we can reverse this permutation. 
 
 If we perform the first of these two permutations the first and last terms stay 
fixed, but the term a12b21z11 becomes a21b11z12 (j=1 s=2 k=1 becomes j=2 s=1 k=1) and so 
on.  
 
 Thus there is a group of index changes that leave our polynomial unchanged, and 
this group has the following six elements 



The identity; (j ,s,k);  (j ,k,s); reverse 1 and 2; reverse 1 and 2 and (j ,s,k); reverse 1 
and 2 and (j,k,s). 
 

The 8 terms in our polynomial form two orbits under the action of this group.  
 
One is the pair consisting of the first and last term above whose indices are all the 

same. These are stabilized by the identity (j,s,k) and (j,k,s).  
 
 The other orbit consists of the remaining terms. Notice that each of these terms 
has one factor with repeated indices and two factors whose indices are each 12 or 21. 
 
 (By the way, you should read (j,s,k) as: the new value of j is the old value of s,  
the new value of s is the old value of k, and the new k value is the old j value.) 
 
 The next question is: how can we exploit this symmetry to find a way to write our 
polynomial as the sum of 7 products. 
 

3. The Last Idea 
 

First we must introduce a product that will give us the first and last entries.  
 
We can find a single product which has all the same symmetries as our 

polynomial, that will give us both of these: namely 
 

(a11 +a22) (b11 +b22) (z11 +z22). 
 
If we write this product out, however, it consists of 8 terms, 2 of which are what 

we want, namely our first and last terms, but there are 6  terms we do not want and of 
course 6 terms in our polynomial that are not present in this product. 

 
In fact the difference between our polynomial and this product is  given by this 

twelve term polynomial: 
 

a12b21z11 + a11b12z21 + a12b22z21 + a21b11z12 + a22b21z12 + a21b12z22  - a11b11z22 - a11b22z11 - 
a11b22z22 - a22b11z11 - a22b11z22 - a22b22z11. 

 
 This difference polynomial, being the difference of two polynomials each of 
which is invariant under the action of our group, is also invariant under this group’s  
action. 
 
 If you look at this difference, it consists of two complete orbits under  our  
symmetry group: both orbits have two indices the same and one different; one has 
only diagonal matr ix elements, the other  has off diagonal ones. 
  

We need to find an invariant that will add the positive terms here and get rid of 
the negative ones. 



 
How can we get an invar iant here?  
 
The obvious way is to find a single asymmetric product that will handle two of 

the terms we need, apply each of the symmetries in our group to it, and add them up. 
 
This will produce an invar iant, consisting of six products, and has a chance 

of being what we need, since it will cer tainly fix the 12 terms we want. I f it does no 
other  harm it will do what we need here. 

 
Suppose we want a term that will produce a12b21z11 - a22b22z11. We can try 

  
(a12 - a22) (b21 + b22) z11. 

. 
  This will do the right thing bby giving us the two terms we want  but multiplying 
it out produces four terms:,  it produces two weird extra terms, namely 
 

a12 b22z11 and   -a22b21 z11. 
 

 And here is the great thing. These two terms are in the same orbit under  our  
group action and have the opposite sign. Thus if we apply all our group operations to 
them and add up the results, we will get that orbit minus itself or 0. 
 
 And the terms we want will give us the difference in orbits that we want. 
 
 Which means we have the answer! 
 

Explicitly, the six  products that we want which, when added to  
(a11 +a22) (b11 +b22) (z11 +z22) give us our polynomial, are 
 

(a12 - a22) (b21 + b22) z11  
 

(a21 – a11) (b12 + b11) z22 
. 

a11 (b12 - b22) (z21 + z22) 
 

a22 (b21 - b11) (z12 + z11) 
 

(a21 + a22) b11 (z12  - z22) 
. 

(a12 + a11) b22 (z21 – z11). 
. 

 And indeed, the sum of the seven products indicated here give us our polynomial. 
 
 Let us recall what this means. The products indicated are the products of the a’s 
and b’s here. The z’s tell us where the products go in the product matrix.  



 
 Thus in the first term, we must put the first product, (a11 +a22) (b11 +b22) in both 
the 11 and 22 entries of the product matrix. Similarly, the second product, (a12 - a22) (b21 + 
b22) goes in the 11 entry, the last, (a12 + a11 ) b22 appears with a positive sign in the 12 
entry and with a negative sign in the 11 entry of the matrix. 
 
 To take the products indicated of 2j by 2j matrices requires first forming the 
combinations of a’s and b’s necessary to take them.  
 

There are 5 additions or subtractions of a matrices and the same number of 
operations on b matrices.  

 
Then, once the results are obtained for these multiplications, they must be 

reassembled into the product matrix. This requires an additional 8 additions or 
subtractions of such matrices for each product of same, for a total of 18 additions or 
subtractions of 2j by 2j  matrices for each multiplication of same. 
  

To handle a 2k by 2k multiplication, we have seen that we must perform 
 
1 2k level product, 7 2k-1 level products, 72 2k-2 level products, and so on. 

 
 This will require, as we have noted a total of 7k multiplications of numbers. 
 
 And how many additions of numbers? 
 
 At level 2k   there will be 18 additions each of 22k-2 matrix elements (namely of all 
the elements of the matrices of half the size of the original matrix that form the elements 
of the top level 2 by 2 matrix) 
 
 At the next level there will 7/4 as many sums: the 7 comes from there being 7 
times as many matrices to deal with, the 4 from the fact that they have half the size and 
hence a quarter as many elements. 
 
 So the answer is 18*22k-2* (1+ 7/4 + (7/4)2 + …(7/4)k-1) which works out to be 
6*(7k-4k). 
 
 Thus even the number of additions grows as 7k. 
 
 This procedure can be implemented on a spreadsheet without too much difficulty 
for 4 by 4 or 8 by 8 matrices, and with a program you could handle any size. 
 
 To do it you must form the 7 combinations of a’s and b’s to be multiplied. Then 
multiply together the appropriate combinations, then put them in the right places in the 
resulting matrix. (You have to remember that the coefficient of z12 goes into the 21 
element of the product matrix-which is the transpose of what you might think, but that is 
the only tricky point.) 



 
4. Matr ix Magic on a Spreadsheet 

 
The act of matrix multiplication in the ordinary way is easier to implement on a 

spreadsheet.  
 

In fact it can be accomplished with one instruction suitably copied. 
 

  Thus if you enter your k by k matrix A in k rows and columns and put B 
somewhere next to it,  you can place the product AB similarly next to B, by entering the 
dot product of the first row of A with the first column of B in its upper left corner. 
 
 If you put dollar signs on all occurrences of the middle index, (the one summed 
over) when you copy this entry into the k rows and columns starting from it, you get the 
product AB, since the other indices will vary and give you the dot product of the rows of 
A with the columns of B. 
 
 But here is where magic occurs. If you copy further to the right, beyond where the 
matrix AB should be, you find another matrix and another and another.  
 
 The spreadsheet iterates the matrix multiplication. So what you get after the 
product AB  is the product of A with it, namely A2B, then A3B, and so on. 
 
 And you get all this at the cost only of copying one entry. 
 
 You may find this quite mundane, but it seems remarkable to me. But here is 
something even you will find remarkable. 
 

5. Determinants and Cofactors with a Spreadsheet 
  
 Lewis Carroll, the author of Alice in Wonderland, was a mathematician and the 
discoverer of a useful theorem about determinants.  
 
 It can be stated as follows. 
 
 Suppose A is an n by n matrix, and suppose we define A jk to be the matrix 
obtained from A by removing its j-th row and k-th column. 
 
 Similarly let us define A jk,lm to be the matrix obtained from A by omitting its j-th 
and k-th rows, and l-th and m-th columns. 
 
 We denote the determinant of a matrix by |A|  
 

Carroll’s (or Dodson’s) theorem then takes the form 
 

|A||A j k ,j k| = |A j j||Akk| - |A j k||Akj|. 



 
 Here a 0 by 0 determinant is defined to be 1. 
 
 The theorem is of particular interest when we choose j=1 and k=n. 
  
 It then states that the determinant of a matrix multiplied by the determinant of the 
matrix obtained by throwing away its outside rows and columns, is the product of the 
determinants of submatrices obtained by throwing away the top row and left column with 
the one obtained by throwing away the last row and right column, less the product of the 
determinant obtained after throwing away the top row and right column and the 
determinant obtained after throwing away the last row and left column. 
 
 This definitely gives the 2 by 2 determinant, and Dodson noticed that it 
generalizes the 2 by 2 formula to larger matrices. 
 
 In fact this theorem can be taken as a definition of larger determinants, so long as 
the determinant of the matrix obtained by throwing away all borders is non-zero. 
 
 The wonderful thing about this theorem is that you can implement it on a 
spreadsheet with one instruction, and it will, if you start with a matrix of 1’s (representing 
0 by 0 determinants) then enter your matrix, then enter one entry and copy it down and 
across, it will first compute the two by two determinants of submatrices consisting of 
adjacent rows and columns, then similar 3 by 3 determinants then 4 by 4 etc., until it 
produces the determinant of your original matrix. 
 
 It can fail if you try to divide by a determinant that is 0; but this can be avoided by 
adding a very small increment appropriately to elements of the original matrix to make all 
determinants obtained slightly different from 0. By varying these increments if necessary 
you can eliminate any errors they might introduce. 
 
 What is the magic entry? 
 

Choose a blank space q rows below the first column of your  matr ix, and 
enter  the 2 by 2 determinant of the first two rows and columns of your  matr ix 
divided by the entry q-1  rows above the top of your  matr ix, and one row to its r ight, 
(which should be a 1). 
  
 You must prepare by filling the squares above your matrix up to the q-1’st row by 
1’s. 
 
 This algorithm computes the determinant with a cubic number of operations, since 
it has to compute the sum of 1 + 22  + 32  + . . . (n-1)2 determinants each of which 
involves two multiplications a subtraction and a division. 
 
 In the previous iteration, just before computing the determinant, this procedure 
produces the determinants of matrices obtained by omitting the last row and column, the 



last row and first column and under these the determinants of matrices obtained by 
omitting the first row and last column and first row and first column. 
 
 These are all plus or minus cofactors of elements in the omitted places. 

 If you want all the cofactors, you can obtain them by copying columns 1 through 
n-1 immediately to the right of the n-th column, (you can do that with one instruction 
(=top left element) copied into the n-1 next columns) and copying the firsr n-1 rows of 
the resulting matrix (similarly) into the n-1 rows immediately beneath it, before you enter 
the instruction for your algorithm. You will then have a 2n-1 by 2n-1 square matrix. 

 This will give you at the end a whole matrix of evaluations of the determinant, 
and on the previous iteration will give you the cofactors, up to sign, starting in the second 
row  and second column. 

 The reason for this is that when you do this at the next to the last iteration each 
adjacent submatrix will omit exactly one row and column and will be a cofactor of the 
entry in that row and column, up to a sign. 0. 

 When n is odd, these values will actually be the cofactors. When n is even, 
however, the signs of every second one must be reversed to get the cofactors. 

 Recall that the cofactors of the matrix divided by the determinant give the 
transpose of the inverse of the matrix. Thus this simple algorithm gives all the 
information you need to deduce the inverse of the matrix. 

Exercises:1. Form a spreadsheet that sets up the matr ix multiplication and 
determinant and inverse finding algor ithms descr ibed in the last two sections. Use 
the latter  to find the inverse of a random 5by 5 matr ix and test it by matr ix 
multiplying it by the or iginal matr ix using the former . Arrange to be able to do this 
for  any 5 by 5 matr ix which doesn’ t cause you to divide by 0. 

 

 

   


