23. TheFinite Fourier Transform and the Fast Fourier
Transform Algorithm

1. Introduction: Fourier Series
Early in the Nineteenth Century, Fourier, in studying sound and oscillatory
motion conceived of the idea of representing periodic functions by their coefficients in an

expansion as a sum of sines and cosines rather than their values.

He noticed that if, for example, you represented the shape of a vibrating string of
length L, fixed at its ends as

y(X) = Z & Sin 21kx/L,
the coefficients, &, contained important and useful information about the quality of the
sound that the string produces that was not easily accessible from the ordinary y=f(x)
representation of the shape of the string.
Thiskind of representation of afunction is called a Fourier Series, and thereisa
tremendous amount of mathematical |ore about properties of such series and for what

classes of functions they can be shown to exist.

One particularly useful fact about them is how we can obtain the coefficients a
from the function.

This follows from the orthogonality property of sines:
[ sin 2rkx/L sin 2mjx/L dx

if theintegral haslimitsOand L, isOif k isdifferent from j and isTtwhen k isj.

(To see this notice that the product of these sines can be written as a constant multiple of
the difference between cosines of 2rik+j)x/L and 2m(k-j)x/L, and each of these cosines
has O integral over thisrange.)

By multiplying the expression for y(x) above by 2rjx/L and integrating the result
from O to L we get then the expression

a = (U] f(x) sin 2mx/L dx.

Fourier series represent only one of many alternate ways we can represent a
function. Whenever we can, by introducing an appropriate weight function in the integral,
obtain asimilar orthogonality relation among functions, we can derive similar formulae
for coefficientsin a series.



2. TheFourier Transform

Given afunction f defined for all real arguments, we can give an alternative
representation to it as an integral rather than as an infinite series, as follows.

f(x) = | exp(ikx) g(k) dk
where the integral isover all real values of k.

The representation of f by the function g is called a Fourier transform of f, and it
isvery important tool in physics.

One reason for thisis that exponential functions €, which f iswritten as an
integral which isa sort of a sum of are eigenfunctions of the derivative. That is, the
derivative, acting on an exponential, merely multiplies the exponentia by ik. This makes
the Fourier transform a useful tool in investigating differential equations.

Another example of it’'s application: In quantum mechanics, we represent the
state of aparticlein aphysical system has wave function, (x), and |[¢p(x)[* dx represents
the probability that the particle in this state has position that lies between x and x+dx.

The same state can also be represented by its wave function in momentum space,
and that wave function of the variable p, is aconstant multiple of the Fourier transform of

o (x):
W(p) = c | exp(ipx)d(x)dx.

We can invert the Fourier Transform in much the same way that we can invert
Fourier Series. The resulting formulais

g(k) = (1/2m) | exp(-ikx) f(x) dx

again theintegration is over al real values of x.

3. TheFinite Fourier Transform

Given afinite sequence consisting of n numbers, for example the ccoefficients of
apolynomial of degree n-1, we can define a Finite Fourier Transform that produces a
different set of n numbers, in away that has a close relationship to the Fourier Transform
just mentioned.

| liketo look at it backwards.



Suppose we have a polynomial p of degree n-1. It can be described by its
coefficients, { g} : with

p(X) = ZJ: Oton-1 q XJ .
We can also represent p by giving its values at any n arguments { p(xx)} .
This can be done as follows. Observe first that the polynomial of degree n-1
FOG)((X-x2) /(Xj-x2))* . . .(exclude (X-X3) /(X}-X})) - . . * (X-Xn)/ (Xj-Xn))
takes the value f(x;) at x=x; and is O at all other of our arguments Xy.

We can recover p from its values by summing similar terms over al j.

To evaluate a polynomial of degree n-1 at n values appears to require n® actions: n
evaluations each of n terms. Similarly the procedure just described for recovering p from
its values requires at least n” operations to obtain all the coefficients of p.

When you evaluate a polynomial at an argument x whose magnitude is not close
to 1, the powers of x that are big dominate those that are small by so much that you have
to worry about losing the smaller terms entirely from round off errors.

Thefinite Fourier transform can be defined asthe act of evaluating a
polynomial of degreen-1 at n rootsof unity, that is, at n solutionsto the equation
x"=1.

This transform can be performed upon polynomials with coefficientsin any field
in which this equation has n solutions, which will happen when there is a primitive n-th
root of unity in the field. (This means anumber such that x"=1 but x* is not 1 for any k
between 1 and n-1.) The n roots of unity are then the various powers of the primitive root.

When does this happen? It does for complex numbers, in which case we have

exp(2r1/n) which is cos(21vn)+isin(217n).
as primitive n-th root of unity.

But it also happensfor remainderson dividing by a prime number of the
form kn+1. In such fields there is a primitive kn-th root of unity and hence a primitive n-
th root of unity (such as the k-th power of the former.)

The analogy between this finite transform and the Fourier transform is mnost

apparent when we use complex numbers. Then, if the coefficients of the polynomial are
{a}, the evaluations become



p(exp(2rik/n)) = Z; g (cos(2rik/n)) + iZ; g (sin(2rk/n)).

(Thisiswhy we say that we are doing things backwards. It is the g which are
analogous to the Fourier coefficients for the function p.)

In general, if we let z be our primitive n-th root of unity, the same expression

becomes

Transforms of this kind can be defined for any value of n. And thereisa
symmetric form for the inverse transformation which takes the values
{p(Z)}, which we shall abbreviate as{py}, and produces the &, so thereis no significant
difference between defining this transform forward or backward.

We can obtain the inverse transformation by multiplying each py by %,
and summing over the n values of k.

Weget Zjxa2*z% or 38 (22" or % a tsj, wheret, isour old friend
the sum of the r-th powers of the n roots, z*, of the equation z" —1.

Recall please, that this equation, 2" — 1 = 0 hasthe form Xy Z*s,= 0, where s is
the k-th elementary symmetric function of the roots of the equation.

Thisimpliesthat the s are all 0, for k=1 up to n-1 for our equation, while sp is 1.

Recall aso that the the t's and the s s are linearly dependent according to the
relations, for each k

Zi-0tok-1 Stii(- 1)j + kSk('l)k =0,
from which we can deduce that the ts; here are all 0, unless s=j.

When s=j, the sum that forms to, or t,, which isn, so that we get

Sz = g 27 = na,
and

a = (Un) 2y pz™

Since z* isanother primitive n-th root of 1 the only differencein this equation,
and the inverse equation for evaluations isin the factor 1/n.

4. The Cooley-Tukey Fast Fourier Transform Algorithm

Suppose nis even, so that n can be written as 2s. Then thisagorithmisa
procedure for reducing 2s evaluations of polynomials of degree 2s to 2s evaluations of



polynomials of degree s, upon making atotal of sadditions, s subtractionsand s
multiplications. Moreover the evaluations consist of evaluating the FFT’ s of two
polynomials, each of degrees-1, at primitive s-th roots of unity.

To keep things straight let us describe the evaluations of a polynomial of degree at
most n-1 at n n-th roots of unity.as an NnFFT.

If nisapower of 2, wecan iteratethis proceduren times, until wereducethe
problem to n evaluations of polynomials of degree O, which isaweird way to say
that we will have obtained our n evaluations.

The reduction that is the heart of this algorithm is based upon the following
observations. To perform an nFFT require evaluating our polynomial of degree up ton-1
at the n powers of a primitive n-th root of unity, z.

1. If we consider the evaluations we seek at the even powers of z, (1, 2%, 2, . . .), these
powers are the powers 0 to s-1 of the s-th root of unity z°.

Thus, these evaluations ar e exactly what isinvolved in an sFFT; the only difference
being that we are here evaluating a polynomial of degree up to n-1, not up to s-1.

2. In every even power evaluation, say at 7 the termin our polynomial axj contributes
qzz"‘. Thus, the contribution from the j-th and (st+j)-th terms together are

aj_szj +a. SZij+23k.

But, 2% is 2™ which is 1, so that the g.scontribution hereis multiplied by the same
power of z asthe g contribution, and can be added to it instead of being treated as a
separate term.

3. But thismeansthat the z* evaluations here are exactly those of SFFT ({a+8js}).

4. The odd power evaluations, (at z, Z°, . . .) each gets a contribution from g of the form
32" which we can write as (§2)z2%*. Notice that these evaluations can be

consider ed evaluations at even roots of unity of a polynomial whose coefficients are
given by the products (a2).

5. In every odd power evalution, say at z****, the term in our polynomial ax! contributes
827 while the term g..X** contributes g.s27°2™ **°. Asin our second observation we
have z*°=1, but now we have an additional factor of z°, which is a primitive square root
of 1, which is—1. In other words the contributions from g and (—g+s) are the same here.

6. We conclude that we can combinethej and s+j terms by subtraction in the odd
power evaluations and these become exactly those of SFFT ({(a-a+52'}).



Y ou will notice that we make an addition for each of our even power evaluations
in making these reductions, and a subtraction and a multiplication for each of the odd
powers reductions, and this means that we must perform s of each of these operations to
reduce the problem by afactor of two.

The remaining task in completing our evaluations after this reduction consists of
repeating it in paralel for the even and odd evaluations. After a second reduction, we
perform 4 reductions in parallel for the even-even, odd-even even-odd and odd-odd
evaluations (starting in positions 2°,z*, z%,z%), and so on.

And that is the algorithm.

Weillustrate it by starting with 4 coefficients 1,3,2,5 (of powers 0 through 3) and
do our calculations mod 17. 4 is a primitive 4™ root of 1 whose inverseis—4 or 13.

In the first step we replace the even power entries, which are the first and third
here, by 1+2 and 3+5 respectively, and the second and fourth entries by (1-2)*4° and
(3-5)* 4" which produces the sequence 3,16,8,9 mod 17.

In the second step we replace the first and second entries by 3+8 or 11 and 16+9
or 8, and the third and fourth by 3-8 or 12 and 16-9 or 7, for an answer of (11,8,12,7) as
the result of evaluating the polynomial 1+3x+2x*+5x° at x= 1,4,16 and 13 mod 17.

It isinstructive to see what happens when we apply the same procedure again to
the sequence obtained here, namely (11,8,12,7).

In the first step this becomes (6,16,15,4) (the last value comes from (8-7)*4 mod
17). And in the last step we get (4,3,8,12).

Notice that if we divide thisresult by 4 we get (1,5,2,3) (to divide 3 by 4 you can
add 17 to the 3, divide 20 by 4 and get 5).

These are the original coefficients of our polynomial, in the order 0,3,2,1.
The reason for thisis that the formulafor the inverse of our transformation
requires dividing by n and also using z* in place of z as the primitive n-th root of unity at

whose powers the evaluations are made.

And of course evaluating at z* is the same thing as evaluating at zZ™, which
means the k-th power evaluation for z* is the n-k-th for z.



