
23. The Finite Fourier Transform and the Fast Fourier 
Transform Algorithm 
 

1. Introduction: Fourier Series 
 
 Early in the Nineteenth Century, Fourier, in studying sound and oscillatory 
motion conceived of the idea of representing periodic functions by their coefficients in an 
expansion as a sum of sines and cosines rather than their values. 
 
 He noticed that if, for example, you represented the shape of a vibrating string of 
length L, fixed at its ends as 
 

y(x) = Σ ak sin 2πkx/L, 
 
the coefficients, ak, contained important and useful information about the quality of the 
sound that the string produces that was not easily accessible from the ordinary y=f(x) 
representation of the shape of the string. 
 
 This kind of representation of a function is called a Fourier Series, and there is a 
tremendous amount of mathematical lore about properties of such series and for what 
classes of functions they can be shown to exist. 
 
 One particularly useful fact about them is how we can obtain the coefficients ak 
from the function.  
 

This follows from the orthogonality property of sines: 
 

���� sin 2πkx/L sin 2πjx/L dx 
 

if the integral has limits 0 and L, is 0 if k is different from j and is π when k is j. 
 
(To see this notice that the product of these sines can be written as a constant multiple of 
the difference between cosines  of 2π(k+j)x/L and 2π(k-j)x/L, and each of these cosines 
has 0 integral over this range.)  
 

 
By multiplying the expression for y(x) above by 2πjx/L and integrating the result 

from 0 to L we get then the expression 
 

aj = (1/π)���� f(x) sin 2πjx/L dx. 
 

Fourier series represent only one of many alternate ways we can represent a 
function. Whenever we can, by introducing an appropriate weight function in the integral, 
obtain a similar orthogonality relation among functions, we can derive similar formulae 
for coefficients in a series. 



 
 

2. The Fourier Transform 
 
 Given a function f defined for all real arguments, we can give an alternative 
representation to it as an integral rather than as an infinite series, as follows. 
 

f(x)  =  ���� exp(ikx) g(k) dk 
 
where the integral is over all real values of k. 
 
 The representation of f by the function g is called a Fourier transform of f, and it 
is very important tool in physics.  
 
 One reason for this is that exponential functions eikx, which f is written as an 
integral which is a sort of a sum of are eigenfunctions of the derivative. That is, the 
derivative, acting on an exponential, merely multiplies the exponential by ik. This makes 
the Fourier transform a useful tool in investigating differential equations. 
 
 Another example of it’ s application: In quantum mechanics, we represent the  
state of a particle in a physical system has wave function, ϕ(x), and |ϕ(x)|2 dx  represents 
the probability that the particle in this state has position that lies between x and x+dx. 
 
 The same state can also be represented by its wave function in momentum space, 
and that wave function of the variable p, is a constant multiple of the Fourier transform of 
ϕ(x):     
 

ψ(p) = c ���� exp(ipx)ϕ(x)dx. 
 

 We can invert the Fourier Transform in much the same way that we can invert 
Fourier Series. The resulting formula is 
 

g(k)  = (1/2π) ���� exp(-ikx) f(x) dx 
 
again the integration is over all real values of x. 
 
 

3.  The Finite Fourier Transform 
 
 Given a finite sequence consisting of n numbers, for example the ccoefficients of 
a polynomial of degree n-1, we can define a Finite Fourier Transform  that produces a 
different set of n numbers, in a way that has a close relationship to the Fourier Transform 
just mentioned. 
 
 I like to look at it backwards.  
 



 Suppose we have a polynomial p of degree n-1. It can be described by its 
coefficients, { aj} : with 
 

p(x) = Σj= 0 to n-1 aj x
j . 

 
 We can also represent p by giving its values at any n arguments { p(xk)} . 
 
 This can be done as follows. Observe first that the polynomial of degree n-1 
 

f(xj)((x-x1) /(xj-x1))* . . .(exclude (x-xj) /(xj-xj)) . . . * ((x-xn)/ (xj-xn)) 
 
takes the value f(xj) at x=xj and is 0 at all other of our arguments xk. 
 
 We can recover p from its values by summing similar terms over all j. 
 
 To evaluate a polynomial of degree n-1 at n values appears to require n2 actions: n 
evaluations each of n terms. Similarly the procedure just described for recovering p from 
its values requires at least n2 operations to obtain all the coefficients of p. 
 
 When you evaluate a polynomial at an argument x whose magnitude is not close 
to 1, the powers of x that are big dominate those that are small by so much that you have 
to worry about losing the smaller terms entirely from round off errors. 
 
 The finite Fourier transform can be defined as the act of evaluating a 
polynomial of degree n-1 at n roots of unity, that is, at n solutions to the equation 
xn=1. 
 
 This transform can be performed upon polynomials with coefficients in any field 
in which this equation has n solutions, which will happen when there is a primitive n-th 
root of unity in the field. (This means a number such that xn=1 but xk is not 1 for any k 
between 1 and n-1.) The n roots of unity are then the various powers of the primitive root. 
 
 When does this happen? It does for complex numbers, in which case we have  
 

exp(2ππππi/n) which is cos(2ππππ/n)+isin(2ππππ/n). 
 
as primitive n-th root of unity.  
 
 But it also happens for remainders on dividing by a prime number of the 
form kn+1. In such fields there is a primitive kn-th root of unity and hence a primitive n-
th root of unity (such as the k-th power of the former.) 
 
 The analogy between this finite transform and the Fourier transform is mnost 
apparent when we use complex numbers. Then, if the coefficients of the polynomial are 
{ aj} , the evaluations become 
 



p(exp(2πik/n)) =  Σj aj (cos(2πjk/n)) +  iΣj aj (sin(2πjk/n)). 
 

 (This is why we say that we are doing things backwards. It is the aj which are 
analogous to the Fourier coefficients for the function p.) 
 
 In general, if we let z be our primitive n-th root of unity, the same expression 
becomes 
 
  
 Transforms of this kind can be defined for any value of n. And there is a 
symmetric form for the inverse transformation which takes the values  
{ p(zk)} , which we shall abbreviate as { pk} , and produces the aj, so there is no significant 
difference between defining this transform forward or backward. 
 
 We can obtain the inverse transformation by multiplying each pk by z-sk, 
and summing over the n values of k. 
 
 We get   Σj,k aj z

jk*z-sk  or  Σj aj  (Σk z
(j-s)k)   or Σj aj ts-j, where tr is our old friend 

the sum of the r-th powers of the n roots, zk, of the equation zn –1. 
 
 Recall please, that this equation, zn – 1 = 0 has the form  Σk z

ksk = 0, where sk
  is 

the k-th elementary symmetric function of the roots of the equation. 
 
 This implies that the sk are all 0, for k=1 up to n-1 for our equation, while s0 is 1. 
 
 Recall also that the the t’s and the s’s are linearly dependent according to  the 
relations, for each k 

Σj=0 to k-1
  sjtk-j(- 1)j  + ksk(-1)k =0, 

 
from which we can deduce that the ts-j here are all 0, unless s=j. 
 
 When s=j, the sum that forms t0, or tn, which is n, so that we get 
 
                                  Σk pk z

-k =  Σj,k aj z
jk*z-sk  = nas, 

and  
 

as = (1/n) Σ k pkz
-k. 

   
 Since z-1  is another primitive n-th root of 1 the only difference in this equation, 
and the inverse equation for evaluations is in the factor 1/n. 
 

4. The Cooley-Tukey Fast Fourier Transform Algorithm 
 
  Suppose n is even, so that n can be written as 2s. Then this algorithm is a 
procedure for reducing  2s evaluations of polynomials of degree 2s  to 2s evaluations of 



polynomials of degree s, upon making a total of s additions, s subtractions and s 
multiplications. Moreover the evaluations consist of evaluating the FFT’s of two 
polynomials, each  of degree s-1, at primitive s-th roots of unity. 
 
 To keep things straight let us describe the evaluations of a polynomial of degree at 
most n-1 at n n-th roots of unity.as an nFFT. 
 
 If n is a power of 2, we can iterate this procedure n times, until we reduce the 
problem to n evaluations of polynomials of degree 0, which is a weird way to say 
that we will have obtained our n evaluations. 
 
 The reduction that is the heart of this algorithm is based upon the following 
observations. To perform an nFFT require evaluating our polynomial of degree up to n-1 
at the n powers of a primitive n-th root of unity, z.  
 
1. If we consider the evaluations we seek at the even powers of z, (1, z2, z4, . . . ), these 
powers are the powers 0 to s-1 of the s-th root of unity z2.  
 
Thus, these evaluations are exactly what is involved in an sFFT; the only difference 
being that we are here evaluating a polynomial of degree up to n-1, not up to s-1. 
 
2. In every even power evaluation, say at z2k, the term in our polynomial ajx

j contributes 
ajz

2kj. Thus, the contribution from the j-th and (s+j)-th terms together are  
 

ajz
2kj + aj+sz

2kj+2sk. 
 

But, z2sk is znk which is 1, so that the aj+s contribution here is multiplied by the same 
power of z as the aj contribution, and can be added to it instead of being treated as a 
separate term. 
  
3. But this means that the z2k evaluations here are exactly those of sFFT({aj+aj+s}). 
 
4.  The odd power evaluations, (at z, z3, . . .) each gets a contribution  from aj  of the form 
ajz

(2k+1)j which we can write as (ajz
j)z2jk.  Notice that these evaluations can be 

considered evaluations at even roots of unity of a polynomial whose coefficients are 
given by the products (ajz

j). 
 

5.   In every odd power evalution, say at z2k+1, the term in our polynomial ajx
j contributes 

ajz
jz2kj while the term aj+sx

j+s  contributes aj+sz
jzsz2kj +2ks. As in our second observation we 

have z2ks=1, but now we have an additional factor of zs, which is a primitive square root 
of 1, which is –1. In other words the contributions from aj and (–aj+s) are the same here. 
 
6. We conclude that we can combine the j and s+j terms by subtraction in the odd 
power evaluations and these become exactly those of sFFT({(aj-aj+s)z

j}). 
 



You will notice that we make an addition for each of our even power evaluations 
in making these reductions, and a subtraction and a multiplication for each of the odd 
powers reductions, and this means that we must perform s of each of these operations to 
reduce the problem by a factor of two. 
 
 The remaining task in completing our evaluations after this reduction consists of 
repeating it in parallel for the even and odd evaluations. After a second reduction, we 
perform 4 reductions in parallel for the even-even, odd-even even-odd and odd-odd 
evaluations (starting in positions z0,z1, z2,z4), and so on. 
 
 And that is the algorithm. 
 
 We illustrate it by starting with 4  coefficients 1,3,2,5 (of powers 0 through 3) and 
do our calculations mod 17. 4 is a primitive 4th root of 1 whose inverse is –4 or 13. 
 
 In the first step we replace the even power entries, which are the first and third 
here,  by 1+2  and 3+5  respectively, and the second and fourth entries by (1-2)*40 and 
(3-5)*41 which produces the sequence 3,16,8,9 mod 17. 
 
 In the second step we replace the first and second entries by 3+8 or 11 and 16+9 
or 8, and the third and fourth by 3-8 or 12 and 16-9 or 7, for an answer of (11,8,12,7) as 
the result of evaluating the polynomial 1+3x+2x2+5x3 at x= 1,4,16 and 13 mod 17.  
 
 It is instructive to see what happens when we apply the same procedure again to 
the sequence obtained here, namely (11,8,12,7).   
 
  In the first step this becomes (6,16,15,4) (the last value comes from (8-7)*4 mod 
17). And in the last step we get (4,3,8,12).  
 
 Notice that if we divide this result by 4 we get (1,5,2,3)  (to divide 3 by 4 you can 
add 17 to the 3, divide 20 by 4 and get 5).  
 

These are the original coefficients of our polynomial, in the order 0,3,2,1. 
 
The reason for this is that the formula for the inverse of our transformation 

requires dividing by n and also using z-1 in place of z as the primitive n-th root of unity at 
whose powers the evaluations are made.  

 
And of course evaluating at z-k is the same thing as evaluating  at z(n-k), which 

means the k-th power evaluation for z-1 is the n-k-th for z. 
 
  


