Addendum to Lecture 12

Principal value: Let \(\varphi = \varphi(x) \) be a test function, \(-\infty < x < \infty \). The principal value arises from the desire to give meaning to the integral
\[
\int_{-\infty}^{\infty} \frac{\varphi(x)}{x} \, dx \quad \text{I} \quad (A.1)
\]

This integral is not properly defined because it behaves like \(\varphi(0)/x \) near \(x=0 \), and \(1/x \) is not integrable if \(\varphi(0) \neq 0 \), then there is no problem, because then \(\varphi(x) \sim \varphi'(0)x \) for \(x \) small.

Way #1: Write \(\varphi = \varphi_e + \varphi_o \) \((A.2)\)

where \(\varphi_e = \frac{1}{2}(\varphi(x) + \varphi(-x)) \) is the even part

As to why one would like to do this... I will give you some reasons later. See p12.21 and beyond
of \(\Phi \) and \(\Phi_0 = \frac{1}{2}(\Phi(x) - \Phi(-x)) \) is the odd part. Then argue that it should be \(\int_{-\infty}^{\infty} \frac{1}{x} \Phi_0(x) \, dx = 0 \) (A.3)

because the integrand is odd and thus write

\[
I = \int_{-\infty}^{\infty} \Phi(x) \, dx = \int_{-\infty}^{\infty} \Phi_0(x) \, dx
\]

which is well defined because \(\Phi_0 = O(x) \) for \(x \) small.

This is the **Principal Value** and it is indicated by the symbol \(\text{P.V.} \) (A.5)

Way #2

Define

\[
\int_{-\infty}^{\infty} \frac{\Phi(x)}{x} \, dx = \lim_{\epsilon \downarrow 0} \int_{-\infty}^{\infty} \frac{\Phi(x)}{x} \, dx
\]

(A.6)
Let us show this is the same as (A.4)

\[
\int_{-\infty}^{\infty} \varphi(x) \frac{dx}{x} = \int_{-\infty}^{-\epsilon} \varphi(x) \frac{dx}{x} + \int_{-\epsilon}^{\epsilon} \varphi(x) \frac{dx}{x} + \int_{\epsilon}^{\infty} \varphi(x) \frac{dx}{x} = \int_{-\infty}^{\infty} \varphi_0(x) \frac{dx}{x}
\]

Clearly \(I_2 + J_2 = 0 \), while \(I_1 + J_1 \)

converge to the formula in (A.4) because

\(\varphi_0(x)/x \) is integrable. Q.E.D.

Way #3: Let \(\phi(x) \) be an even test function

with \(\phi(0) = 1 \) and write

\[
I = \int_{-\infty}^{\infty} \left(\frac{1}{x} \right) (\phi(x) - \phi(0)\phi(x)) \, dx + \phi(0) \int_{-\infty}^{\infty} \phi(x) \, \frac{dx}{x}
\]

\(\frac{1}{x} \) integrable

(A.7) Argue this is zero

because the numerator is odd
Again, this is the same as (A.4) and the answer does not depend on ϕ.

Proof \[
\frac{1}{x} [\varphi(x) - \varphi(0) \Phi] = \frac{1}{x} \varphi_0 + \frac{1}{x} \left[\varphi_e(x) - \varphi(0) \Phi \right] \]

\[
\leq K
\]

However \(\varphi_e(0) = \varphi(0) \) \(\therefore K \) is integrable and odd \(\therefore \int K dx = 0 \). \text{Q.E.D.}

Attempts using "naive" approach fail; shown next.

Generalizations of the principal value

The approach used to define f earlier works because the singularity $1/x$ has an "area" under it, but

this area in the difference

between two "equal" infinities, and we can cancel the infinity by $1/x$

Let us call it the "naive" approach.
"proper" limit, as in (A.6)

Note, however, that the value depends on which
limit. For example \(\lim_{\varepsilon \to 0} \int_{-\infty}^{\infty} q(x) \frac{dx}{2\varepsilon} \) gives a different answer.

But the symmetric limit has nice properties!

But this fails for higher order singularities

For example \(\frac{1}{x^2} \) is non-integrable and the infinity is all of the same sign. Thus suppose we

(i) Try approach leading to (A.9)? We would then argue that \(\int_{\frac{1}{x^2}} q_0 \, dx = 0 \) because the integrand is odd and this yields

\[
\int_{\frac{1}{x^2}} q \, dx = \int_{\frac{1}{x^2}} q_0 \, dx
\] \((A.9) \)

but this is useless
because $\frac{1}{x^2} \varphi(x)$ is not integrable, except for the special case when $\varphi(x) = \varphi(\phi)$.

(ii) Try the approach leading to (A.6)?

Does not work because any limit of the form
\[
\lim_{\varepsilon \to 0} \int_{-\infty}^{\infty} \frac{1}{s} \varphi(x) \, dx, \quad s = s(\varepsilon)
\]
will diverge no matter how $s \downarrow 0$ as $\varepsilon \downarrow 0$

There is no finite cancellation!

Analogy: The series $\sum_{n=1}^{\infty} (-1)^n/n$ can be reordered to converge to any value in $[-\infty, \infty]$. But $\sum_{n=1}^{\infty} 1/n$ diverges no matter the order.

(iii) Suppose we try the approach in (A.7)?

Then we would write.
\[
\int_{-\infty}^{\infty} \frac{1}{x^2} \varphi(x) \, dx = \int [\varphi(x) - \varphi(0) \phi_1(x) - \varphi'(0) \phi_2(x)] \frac{dx}{x^2} + \frac{I_1}{I_2} \int \frac{\varphi(x) \phi_1(x) \, dx}{x^2} + \frac{I_1}{I_3} \int \frac{\varphi'(0) \phi_2(x) \, dx}{x^2}
\]

where \(\phi_1 \) is an even test function with \(\phi_1(0) = 1 \)
\(\phi_2 \) is odd \(\phi_2'(0) = 1 \)

Then \(I_1 \) is well defined.

\(I_3 \) can be argued to vanish because the integrand is odd

\(I_2 \leftarrow ?? \)

Of course, you could say: well let us throw out \(I_2 \) and \(I_3 \) (the infinities) and keep only the finite part \(I_1 \) !

problems is: The answer depends on
the choice of ϕ_1! (A.12)

and there is no clear "special" ϕ_1

Example $\frac{1}{x^3}$. OK, here there is also a situation with two infinities "equal and of opposite sign. So maybe the naive approach work?"

Answer: No. $\frac{1}{x^3}$ $\phi(x) \sim \frac{1}{x^3}\phi(0) + \frac{1}{x^2}\phi'(0)$

$+ \frac{1}{2x}\phi''(0) + \text{regular}$

and the $\frac{1}{x^2}$ singularity ruins it. (A.12) b

Generalizations of the principal value using generalized derivative notions

Earlier (pp 12.03 - 12.04) we saw that the generalized derivative of $\ln|1-x|$ was the principal value; that is:
\[\int_{-\infty}^{\infty} (\ln|x|) \varphi(x) \, dx = \int_{-\infty}^{\infty} \frac{1}{x} \varphi(x) \, dx \quad (A.13) \]

We can now use this idea to define:

\[\int_{-\infty}^{\infty} \frac{1}{x^2} \varphi(x) \, dx \overset{\text{Definition}}{=} \int_{-\infty}^{\infty} (\ln|x|) \varphi'(x) \, dx \quad (A.13) \]

\[\begin{align*}
\text{Generalized derivative manipulations} & \quad \left\{ \begin{array}{c}
\int = -\int (\ln|x|)'' \varphi(x) \, dx \\
\int = -\int (\ln|x|) \varphi''(x) \, dx
\end{array} \right. \quad (A.14)
\end{align*} \]

Unfortunately (A.14) does not have a nice "intuitive" interpretation as "keep the finite part and delete the \(\infty \) which the naive approach provides." \(^{+} \)

\[^{+} \text{At least not that I know.} \]
On the other hand this approach allows defining many other singular integrals. For example:

$$\int_{-\infty}^{\infty} |x|^{-\alpha} \varphi(x) \, dx = \int_{-\infty}^{\infty} \frac{\sigma |x|^{1-\alpha}}{\alpha-1} \varphi'(x) \, dx$$

$$\sigma = \text{sign} \, x$$

$$= \int_{-\infty}^{\infty} \sigma |x|^{1-\alpha} \varphi'(x) \, dx$$

since

$$\frac{d}{dx} \sigma |x|^{1-\alpha} = -|x|^{-\alpha}$$

None-test functions

Note that the P.V. can be defined even if \(\varphi \) is not smooth! (A.6) requires

(i) \(\frac{1}{x}[\varphi(x)-\varphi(0)] \) integrable near zero

(ii) \(\frac{1}{x} \varphi(x) \) integrable at \(0 \)

It can also be defined over finite
and \(f \) vanishes as \(|z| \to \infty, \text{Re}(z) > 0 \).

Intuitively - you just need to keep track of the boundary contributions when integrating by parts!

The Hilbert Transform

Principal Values and Analytic Functions

Let \(\varphi = \varphi(x) \) be a test function \(^\dagger\) for \(-\infty < x < \infty\). Is there a \(\psi = \psi(x) \) such that \(\varphi + i\psi \) is the limit on the real axis of a function \(f = f(z) \) analytic for \(y > 0 \)? (Here \(z = x + iy \)).

The answer is \textbf{yes}. We show this next.

Define

\[
\hat{f}(z) = \frac{1}{i\pi} \int_{-\infty}^{\infty} \frac{\varphi(x)}{x-z} \, dx \qquad \text{Re}z > 0
\]

\(^\dagger\) This can be done for \(\varphi \)'s that need not be as smooth as test functions, nor decay like them.
Then \(f \) is analytic for \(\text{Re}(z) > 0 \) and vanishes as \(|z| \to \infty \). We now compute

\[
\lim_{z \to 0} f(z) = \begin{cases}
\text{the limit } z \to 0 \text{ for any } x_0
\end{cases}
\]

\[
f(z) = \frac{1}{i\pi} \int_{-\infty}^{e} \frac{\phi(x) \, dx}{x-z} + \frac{1}{i\pi} \int_{e}^{\infty} \frac{\phi(x) \, dx}{x-z}
\]

\[
+ \frac{1}{i\pi} \int_{-e}^{e} \frac{\phi(0) \, dx}{x-z} + \frac{1}{i\pi} \int_{-e}^{e} \frac{\phi(x) - \phi(0) \, dx}{x-z}
\]

where \(0 < e < 1 \)

Now \(J \) can be computed explicitly, using the principal branch of \(\log \):

\[
J = \frac{1}{i\pi} \left\{ \log(e-z) - \log(-e-z) \right\}
\]

\[
= \frac{1}{i\pi} \left\{ \ln r_2 - \ln r_1 + i(\theta_2 - \theta_1) \right\}
\]
Hence the limit is

$$\lim_{z \to 0} f(z) = \frac{1}{i\pi} \int_{-\infty}^{-\epsilon} \frac{\varphi(x) \, dx}{x} + \frac{1}{i\pi} \int_{\epsilon}^{\infty} \frac{\varphi(x) \, dx}{x}$$

$$+ \varphi(0) + \frac{1}{i\pi} \int_{-\epsilon}^{\epsilon} \frac{\varphi(x) - \varphi(0) \, dx}{x}$$

Hence, taking now $\epsilon \to 0$ we see that

$$\lim_{z \to x_0} f(z) = \varphi(x_0) + \frac{1}{i\pi} \int \frac{\varphi(x) \, dx}{x-x_0}$$

(A.20)

Thus

$$\psi(x) = -\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\varphi(s) \, ds}{s-x}$$

$$= H \varphi$$ (A.21)

H is called the Hilbert transform.

There is an analogous problem for periodic functions (say, of period 2π). It can be stated as follows:
Given a real valued function on the unit circle \(|z| = 1 \), \(\varphi = \varphi(\theta) \), \(z = e^{i\theta} \), find another function \(\psi = \psi(\theta) \) such that \(\varphi + i\psi \) is the limit on \(|z| = 1 \) of an analytic function \(f(z) \) defined for \(|z| < 1 \).

Again \(\psi = H \varphi \) (A.23)

where \(H \) is the periodic Hilbert Transform also given by a principal value integral.

To make \(\psi \) unique require \(\int_0^{2\pi} \varphi(\theta) d\theta = 0 \) (A.23)

Hilbert Transform and Fourier Series

Let \(\varphi(\theta) = \sum_{n=-\infty}^{\infty} \varphi_n e^{in\theta} \)

\(\varphi_n = \varphi_{-n} \) (A.25)
Note: \(\phi \) smooth \(\Leftrightarrow \phi_n \) decays fast with \(|x| \to \infty\)

Then
\[
\phi(\theta) = \phi_0 + 2 \text{Re} \sum_{n=1}^{\infty} \phi_n e^{in\theta} \\
\hat{f}(z) = \phi_0 + 2 \sum_{n=1}^{\infty} \frac{\phi_n}{z^n}; z = r e^{i\theta} \\
\psi(\theta) = 2 \text{Im} \sum_{n=1}^{\infty} \phi_n e^{in\theta} \tag{A.26}
\]

Note \(\psi = \sum \phi_n e^{in\theta} \); \(\phi_n = -i \text{sign}(n) \phi_n \)

\{ Hilbert transform in Fourier \}
\(\phi_0 = 0 \), of course.

\begin{align*}
\text{Hilbert Transform and Fourier Transform} \\
\phi &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{\phi}(k) e^{ikx} \, dk = \frac{1}{\pi} \text{Re} \left(\int_{0}^{\infty} \hat{\phi}(k) e^{ikx} \, dk \right) \\
\hat{f}(z) &= \frac{1}{\pi} \int_{0}^{\infty} \hat{\phi}(k) e^{ikz} \, dk \\
\psi &= \frac{1}{\pi} \text{Im} \int_{0}^{\infty} \hat{\phi}(k) e^{ikx} \, dk \\
\hat{\psi}(k) &= -i \text{sign}(k) \hat{\phi}(k) \tag{A.28}
\end{align*}

This is \((A.21) \)
The Dirichlet to Neumann Map is as follows:

Solve an equation, say \(\Delta u = 0 \), in some domain \(\Omega \), with Dirichlet boundary conditions: \(u = f \) on \(\partial \Omega \)

where \(f \) is some function defined on \(\partial \Omega \). Then let \(g = \frac{\partial u}{\partial n} \) be the normal derivative of the solution along \(\partial \Omega \). Then \(g \) is a function defined on \(\partial \Omega \) and \[g = DTN(f) \]

That is, \(DTN \) is an operator mapping functions defined on \(\partial \Omega \) to functions in \(\partial \Omega \).
Consider the example of the unit disk.

\[f = \sum_{n=0}^{\infty} f_n e^{i n \theta} \]

Note: \(f \) and \(u \) real

\[u = f(\theta) \]

\[\Delta u = 0 \]

Thus

\[u = f_0 + 2 \text{Re} \sum_{n=1}^{\infty} f_n e^{i n \theta} \]

Using that \(f_{-n} = \overline{f_n} \)

\[g = \text{DTN}(f) = u_{r=1} \]

\[= 2 \text{Re} \sum_{n=1}^{\infty} n f_n e^{i n \theta} \]

\[= 2 \text{Im} \sum_{n=1}^{\infty} \bar{n} f_n e^{i n \theta} \]

On the other hand

\[f' = 2 \text{Re} \sum_{n=1}^{\infty} \bar{n} f_n e^{i n \theta} \]

\[\text{Note} \quad u = \text{Re} \left\{ f_0 + 2 \sum f_n z^n \right\}, \ z = re^{i\theta} \]

and real part of an analytic function harmonic

\[\Rightarrow \]

\[g = \text{DTN}(f) = u_{r=1} \]

\[= 2 \text{Re} \sum_{n=1}^{\infty} n f_n e^{i n \theta} \]

\[= 2 \text{Im} \sum_{n=1}^{\infty} \bar{n} f_n e^{i n \theta} \]

\[\text{On the other hand} \]

\[f' = 2 \text{Re} \sum_{n=1}^{\infty} \bar{n} f_n e^{i n \theta} \]

\[\text{Note} \quad u = \text{Re} \left\{ f_0 + 2 \sum f_n z^n \right\}, \ z = re^{i\theta} \]

and real part of an analytic function harmonic.
Now compare with (A.26) where the Hilbert Transform \(\Phi \rightarrow \psi \) for periodic functions is given.

Clearly

\[
q = DTN(f) = Hf'
\]

which relates the Hilbert Transform to the DTN.

Water waves and the DTN

The equations for "water waves" with the following approximations

\(z = b(x) \)

\(\vec{u} = \nabla \phi \)

(1) Constant density \(\rho \)

(2) Ignore air \(\rho_0 \ll \rho \)
3. Inviscid and irrotational flow: \(\vec{u} = \nabla \phi ; \phi = \phi(x, z) \)

4. Ignore surface tension

\(\begin{align*}
\text{(i)} \quad \Delta \phi &= 0 \quad \text{for} \quad b < z < \gamma \\
\text{(ii)} \quad \hat{n} \cdot \nabla \phi &= 0 \quad \text{for} \quad z = b \\
&\quad \text{(impermeable bottom)} \\
\text{(iii)} \quad \gamma_t + \phi_x \phi_z &= \phi_z \quad \text{for} \quad z = \gamma \quad \text{Kinematic BC} \\
\text{(iv)} \quad g \gamma + \phi_t + \frac{1}{2} \phi_x^2 &= 0 \quad \text{for} \quad z = \gamma \quad \text{Dynamic BC} \\
&\quad g = \text{acceleration of gravity}
\end{align*} \)

In 3-D replace \(\phi_x \rightarrow \nabla_h \phi, \phi_z \rightarrow \nabla_h \gamma \)

where \(\nabla_h = (\partial_x, \partial_\gamma) \)

Now define \(\varphi = \varphi(x, t) = \phi(x, \gamma, t) \)

\(\begin{align*}
\hat{n} &= \text{unit normal to surface} \\
\psi &= (\hat{n} \cdot \nabla \phi)\bigg|_{z = \gamma} = DTN(\varphi)
\end{align*} \)
We are going to show now that, using the DTN, the equations can be written as equations for \(y = y(x,t) \) and \(\phi = \phi(x,t) \) only.

Note \(\hat{n} = (-\nu_x, 1) \):

\[
\psi' = -\nabla_x \phi^t + \phi_z \bigg|_{z = y}
\]

Chain rule \(\Rightarrow \)

\[
\phi_t = \phi_z \nu_t + \phi_t \bigg|_{z = y}
\]

\[
\phi_x = \phi_x + \phi_z \nu_x \bigg|_{z = y}
\]

\[
\phi_z \quad \text{(A.35)}
\]

This is a linear system, with \(\det = (1 + \nu_x^2) \), which we can solve to write \(\phi_t, \phi_x, \phi_z \) at the surface in terms of \(y, \phi, \psi \).
Substituting into (iii-iv) of (A.33) then yields the desired equations.

Example: Linear case (infinitesimal slab.)

Then, on \(z = y \): \(\Phi_z = \Psi, \Phi_x = \Psi_x, \Phi_t = \Psi_t \)

and the equations are

\[
\eta_t = \Psi; \quad \eta_y + \Psi_t = 0; \quad \Psi = \text{DTN} \Psi
\]

(A.36)

Advantage: the DTN can be computed using Boundary Integral Methods (BIM) and there is no need to evaluate/compute the values of \(\Psi \) everywhere in the domain.

Note that the DTN also relates the temperature on the boundary with the heat flux (for steady state).

End Appendices follow.
Appendix A

Example: principal value integral for a function with a continuous derivative, on a finite interval. (Below $a < 0 < b$)

\[
\int_{a}^{b} \frac{1}{x} f(x) \, dx = \ln|x| \bigg|_{a}^{b} - \int_{a}^{b} (\ln|x|) f'(x) \, dx
\]

(Ap1) \[(\ln b) f(b) - (\ln a) f(a) \]

If \(f \) has a second derivative, then

\[
\int_{a}^{b} \frac{1}{x^2} f(x) \, dx = \left(-\frac{1}{x} f(x) \right) \bigg|_{a}^{b} + \int_{a}^{b} \frac{1}{x} f'(x) \, dx
\]

(Ap2) \[-\frac{1}{b} f(b) + \frac{1}{a} f(a) \]

† You can arrive at the same answer by writing \(f = f_o + f_e \) (odd and even parts) and arguing that \(\int_{-S}^{S} \frac{1}{x} f_e \, dx = 0 \) for any \(S > 0 \). But this argument does not work for (Ap2).