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1 Periodic solution to Duffing’s equation (statement).

All the solutions to the equation (Duffing’s equation)

d2 y

dt2
+ y + 2 ε y3 = 0, where 0 < ε � 1, (1.1)

are periodic in time (can you show this?). Consider now the initial value problem for equation (1.1),

given by

y(0) = 1 and
dy

dt
(0) = 0. (1.2)

Part (a) Show that the solution to (1.1 – 1.2) is an even function of t.

Part (b) If you attempt to expand the solution to (1.1 – 1.2) using a regular expansion of the

form y ∼
∞
∑

n=0

εn yn(t), you will find that the expansion breaks down for t � 1, and requires the

condition 0 ≤ t � ε−1 for validity. In particular, y1 will have a term proportional to t sin t, y2 a

term proportional to t2 cos t, and so on.

1
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The reason for the breakdown of the regular expansion above, is that the solution to (1.1 – 1.2) is

periodic, but its period is not 2 π, but only approximately 2 π. Hence expand the solution as follows

y ∼
∞
∑

n=0

εn yn(τ), where τ = ωt, ω = 1 + ε ω1 + ε2 ω2 + . . . (1.3)

and the ωn’s are some constants. Of course, you do not know a priori what these constants are, but

you should be able to determine them by requiring that each of the yn’s be a 2 π periodic function

of τ . Namely: when you plug the expansion into the equation, and collect equal powers of ε, you

will find that at O(εn) you have to solve an equation of the form ÿn + yn = Fn, where Fn(τ) is some

forcing term (and the dots indicate derivation with respect to τ ). The constant ωn will appear in

Fn, and you will find that yn is periodic if and only if ωn takes a particular value.

Carry the expansion in (1.3) at least as far as determining y1 and ω1.

HINT: Change variables t → τ before substituting the expansion for y into the equation.

NOTE: the approach in (1.3) is a particular case of the Poincaré - Linstead method.

Part (c) The solution to (1.1 – 1.2) can be written exactly in terms of quadratures. In particular,

you can obtain an integral expression that gives the period T as a function of ε. Namely, an equation

of the form

T =
∫ b

a
f(y, ε) dy, (1.4)

for some function f and some integration limits a < b. Find this formula for the period.

Part (d) Find the first two terms in a small ε expansion for the period T , as given by equa-

tion (1.4). Namely, show that (1.4) =⇒

T = T0 + εT1 + O(ε2), (1.5)

for some constants T0 and T1 that you should compute.

Part (e) The expansion in part b gives a prediction for the period. Namely: T = 2π/ω. Show

that this prediction agrees with your result in part d.
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Solution to the periodic . . . Duffing’s equation problem.

Multiply equation (1.1) by 2
dy

dt
, an integrate. This yields:

(

d y

dt

)2

+ y2 + ε y4 = E, where E is a constant. (1.6)

Thus, in the phase plane (y, z) — where z =
dy

dt
— the solutions are restricted to the level curves

of z2 + y2 + ε y4, which are all closed simple curves. Hence all the solutions are periodic.

Solution to part (a) Both equation (1.1) and the initial values (1.2) are invariant under the

transformation t → −t. Thus, if y = Y (t) is a solution to (1.1 – 1.2), y = Y (−t) is also a solution.

But the solution to an initial value problem is unique. It follows that the solution to (1.1 – 1.2)

must be an even function of t.

Solution to part (b) First we transform variables t → τ . Thus:

ω2 d2 y

dτ 2
+ y + 2 ε y3 = 0. (1.7)

Now substitute (1.3) into (1.7), and collect equal powers of ε. This yields:

O(ε0) ÿ0 + y0 = 0, with y0(0) = 1 and ẏ0(0) = 0 =⇒ . . . . . . . . . . . . . . . . . . . . . . . . . y0 = cos(τ).

O(ε1) ÿ1 + y1 = −2
(

ω1 ÿ0 + y3
0

)

= 2 (ω1 − 3/4) cos t − (1/2) cos 3t,

with y1(0) = ẏ0(0) = 0 =⇒ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . y1 =
1

16
(cos 3t − cos t) ,

where we must choose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ω1 = 3/4

since otherwise y1 would have a non-periodic term in it.

Solution to part (c) Using the initial values, we can evaluate E = 1 + ε in equation (1.6) for

the problem in (1.1 – 1.2). Thus the solution satisfies

dy

dt
= ±

√

(1 − y2) (1 + ε (1 + y2)). (1.8)

It follows that the solution oscillates between y = ±1, with a half period the time it takes the

solution to go from y = −1 to y = 1. Hence we can write:

T = 2
∫ +1

−1

dy
√

(1 − y2) (1 + ε (1 + y2))
= 4

∫ 1

0

dy
√

(1 − y2) (1 + ε (1 + y2))
. (1.9)
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Solution to part (d) We use the binomial theorem to expand the factor involving ε in the integral

in (1.9). This yields:

T = 4
∫ 1

0

dy
√

(1 − y2)
− 2 ε

∫ 1

0

(1 + y2)
√

(1 − y2)
dy + O(ε2). (1.10)

The substitution y = sin θ transforms these integrals into easy ones. Evaluating them we then get:

T = 2 π − ε
3

2
π + O(ε2). (1.11)

Solution to part (e) The expansion in part b predicts a period:

T =
2 π

ω
=

2 π

1 + ε 3
4

+ O(ε2)
= 2 π

(

1 − ε
3

4
+ O(ε2)

)

= 2 π − ε
3

2
π + O(ε2), (1.12)

which obviously matches the exact period expansion in (1.11) of part d.

2 Traveling waves (statement).

For linear and homogeneous in space wave problems, one can find traveling wave solutions expressed

in terms of sine and cosine functions. For example, consider the simple equation

ut − uxxx = 0. (2.1)

The traveling wave solutions of this equation are solutions of the form u = y(τ), where τ = k (x − s t)

is the phase, y is periodic of period 2 π in τ , s is the phase speed, and k 6= 0 is the wavenumber —

related to the wavelength by k = 2 π/λ. Substituting this form into the equation yields the ode:

s
dy

dτ
+ k2 d3y

dτ 3
= 0. (2.2)

The 2 π periodic solutions to this equation are easy to find,1 and are given by:

y = M + a cos(τ + τ0), where s = k2, (2.3)

and where M , a > 0 and τ0 are constants (wave mean, amplitude and phase shift). Notice that

the phase speed s is not arbitrary: it is a function of the wavenumber k.

1Since it is a constant coefficients linear ode.
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For nonlinear problems we can also look for traveling wave solutions. An important change is that

the phase speed in these cases is a function not only of the wavenumber, but of the wave

amplitude and mean as well. For example, calculate the traveling waves for the equation

ut + 3 ε u2 ux − uxxx = 0, where 0 < ε � 1. (2.4)

Do so by expanding
u = y(τ) ∼

∞
∑

n=0

εn yn(τ) and s = s0(k) + ε s1(k, a, M) + . . . , (2.5)

where the sn’s are functions to be found. Calculate up to and including y1 and s1.

HINTs: clearly y0 and s0 will be given by (2.3). The requirement that each of the functions yn

must be a 2π periodic function of τ will then determine the higher order s′ns. It is convenient

to fix the phase shift by setting τ = 0 to be a maximum of the wave, and to set the amplitude and

the mean a-priory. That is: Impose the conditions

Mean(y) = M, y(0) = a + M, and
dy

dτ
(0) = 0, where a > 0. (2.6)

Thus Mean(yn) = M δ0n, yn(0) = (M + a) δ0n, and ẏn(0) = 0 — where δij is Kronecker’s symbol.

Solution to the traveling waves problem.

Substituting u = y(τ) — where τ = k (x − s t) — into equation (2.4), we obtain the ode

s
dy

dτ
+ k2 d3y

dτ 3
= ε

d

dτ

(

y3
)

. (2.7)

We must find 2π-periodic solutions of this ode, satisfying (2.6). Thus we substitute the expan-

sion in (2.5) into this last equation, and solve order by order, as follows below.

(A) O(1) terms. We obtain

s0
dy0

dτ
+ k2 d3y0

dτ 3
= 0. (2.8)

The general solution to this problem has the form y0 = c1 + c2 cos(
√

s0 τ/k) + c3 sin(
√

s0 τ/k),

where the cj’s are constants. Hence, in order to satisfy 2π-periodicity and (2.6), we must take

y0 = M + a cos τ , with s0 = k2. (2.9)
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(B) O(ε) terms. We obtain

s0
dy1

dτ
+ k2 d3y1

dτ 3
=

d

dτ

(

y3
0

)

− s1
d

dτ
(y0) . (2.10)

That is

k2 d

dτ

(

y1 +
d2y1

dτ 2

)

=
d

dτ

{(

3 M2 a +
3

4
a3 − s1 a

)

cos τ +
3

2
M a2 cos 2τ +

1

4
a3 cos 3τ

}

. (2.11)

Thus we must select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s1 = 3 M2 +
3

4
a2

for the solution y1 to this last equation to be periodic.

Then . . . . . . . . . . . . . y1 =
(

1

2
M a2 k−2 +

1

32
a3 k−2

)

cos τ − 1

2
M a2 k−2 cos 2τ − 1

32
a3 k−2 cos 3τ

satisfies the conditions in (2.6).

Notice that, in this example, s1 is not a function of k. But at higher order in the expansion

for the phase speed, one finds that sn (for n > 1) depends on k.

3 Problem # 1 in boundary layers (statement).

Find y = y(x) approximately for the following boundary-value problems, where 0 < ε � 1. In

each case compute the leading order terms in each of the various regions that arise — including any

boundary layers. No undetermined constants should be left.

Part (a)

ε y′′ + (1 + x)3 y′ + 2 y = 0, for 0 < x < 1, with y(0) = 0 and y(1) = e1/4. (3.1)

HINT: Use dominant balance, and scaling of the independent variable, to find the equation(s) that

must hold in any possible layer — where the solution varies on a short space scale. Then, from the

properties of the solutions to these equations (growth or decay), determine where a layer may arise.

Part (b)

ε y′′ − (1 + x)3 y′ + 2 y = 0, for 0 < x < 1, with y(0) = 0 and y(1) = 1. (3.2)
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HINT: Note that the change in the sign of the first derivative term will have an important effect

on the boundary layer equations.

Part (c)

ε y′′ − 2 sin x y′ + cos x y = 0, for 0 < x < 1, with y(0) = 2 and y(1) = ε−1/4. (3.3)

HINT: Show that there is a boundary layer at x = 0 and another boundary layer at x = 1. Describe

their widths, and derive approximate formulas for the slowly (away from the layers) and rapidly

varying (in the layers) solutions. Note that the boundary layer at x = 1 is not very different in

character from the boundary layers in the other two parts, but the boundary layer at x = 0 has a

different character (because sin x vanishes there). You will need to use parabolic cylinder functions

to deal with the behavior near x = 0.

Solution to problem # 1 in boundary layers.

Part (a)

(a.1) A regular expansion y ∼
∑

εn yn(x) yields, at leading order (1 + x)3 y′0 + 2 y0 = 0, with so-

lution y0 = c1 exp
{

(1 + x)−2
}

— where c1 is a constant. This can satisfy, at most, one of the

boundary conditions. Thus a rapidly varying layer is needed somewhere.

NOTE 1. Calculation of the higher order terms in this regular expansion shows no indication of

breakdown anywhere for 0 ≤ x ≤ 1. In other words ε yn+1(x) � yn(x) for all n and all 0 ≤ x ≤ 1.

Nevertheless, this regular expansion is valid only for ε � x ≤ 1. The reason is that terms

proportional to e−ζ — ζ as defined in (a.3) — are needed to approximate the solution near x = 0,

which are missing in this expansion. In order to be able to neglect these terms, x � ε is needed.

(a.2) To search for the appropriate layer expansion, we begin by doing a dominant balance analysis.

At a layer, the second derivative term must become important — hence the derivatives will be large.

Because the first derivative term has a coefficient that is always positive, this term will be large

in the layer2 — thus it must be the one that balances the second derivative term. Furthermore,

2While the 3-rd term in the equation remains O(1).
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a balance between the first and second terms in equation (3.1) yields exponentially decreasing

behavior. Hence: there is a boundary layer, it occurs at the left end of the interval, and it

entails a balance of the first two terms in equation (3.1).

(a.3) Using the result of (a.2), we introduce the layer variable ζ = x/ε — so that the equation

becomes
d2y

dζ2
+ (1 + ε ζ)3 dy

dζ
+ 2 ε y = 0. (3.4)

The leading order (set ε = 0) solution for this equation has the form y ∼ c2 + c3 e−ζ , with c1 and c2

constants. This solution must satisfy the boundary condition at x = 0, hence y ∼ c2

(

1 − e−ζ
)

.

NOTE 2. The higher orders in this boundary layer approximation have terms proportional to

c2 (ε ζ)n. Thus the boundary layer expansion is valid for 0 ≤ ε ζ = x � 1.

(a.4) From (a.2) we know that the regular expansion in (a.1) must satisfy the boundary condition

on x = 1. Hence c1 = 1. On the other hand, the regular expansion in (a.1), and the boundary layer

approximation in (a.3) must match for ε � x � 1 (i.e. 1 � ζ � 1/ε). Hence c2 = e.

Putting it all together, we get the following approximation for the solution

For ε � x ≤ 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . y ∼ exp
{

(1 + x)−2
}

.

For 0 ≤ x � 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . y ∼ e
(

1 − e−ζ
)

.

Uniformly valid approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . y ∼ exp
{

(1 + x)−2
}

− exp {1 − ζ} .

Part (b)

The solution is very similar to the problem in part (a). As in (a.1), the need for a layer some-

where becomes apparent because a regular expansion y ∼
∑

εnyn(x) can only satisfy, at most, one

boundary condition. Then the same type of argument as in (a.2) shows that: there is a boundary

layer, it occurs on the right end of the interval, and it entails a balance of the first two terms

in equation (3.2). Thus the solution of the problem proceeds as follows:

(b.1) Regular expansion y ∼
∑

εnyn(x), satisfying the boundary condition on the left y(0) = 0.

It is easy to see that this expansion vanishes to all orders. As in NOTE 1 — since terms
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proportional to e8 ζ (with ζ as in (b.2)) are missing from this expansion — we conclude that: this

regular expansion is valid for ε � 1 − x ≤ 1, where y is smaller than any power of ε.

(b.2) Right boundary layer expansion y ∼
∑

εnyn(ζ) — where ζ =
x − 1

ε
— satisfying the

boundary condition on the right y(1) = 1. In terms of ζ, the equation is

d2y

dζ2
− (2 + ε ζ)3 dy

dζ
+ 2 ε y = 0. (3.5)

Hence the general solution for y0(ζ), satisfying the boundary condition for ζ = 0, has the form

y0 = c + (1 − c) e8 ζ — where c is a constant. Because the expansions in (b.1) and (b.2) have to

match, we conclude that c = 0. Thus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . y ∼ e8ζ .

NOTE 3. The higher orders in this boundary layer approximation have terms involving (ε ζ2)n e8ζ ,

(ε2 ζ3)n e8ζ , and (ε3 ζ4)n e8ζ . Thus the boundary layer expansion is valid for 0 ≤ ε ζ2 � 1.

Equivalently . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 ≤ 1 − x �
√

ε.

(b.3) WKB-like approximation. Finally, we point out that we can look for solutions of equa-

tion (3.2) of the form y = A eS(x)/ε, where A ∼
∑

εn An(x). This then leads to the approximation

y ∼
(

8 t−3 + O(ε)
)

exp

{

t4 − 16

4 ε

}

, where t = 1 + x = 2 + ε ζ. (3.6)

The results in (b.2) follow upon substituting t = 2 + ε ζ, and expanding appropriately for ε ζ2 � 1.

The results in (b.1) follow because this expression is exponentially small for ε � 1 − x ≤ 1, since

then ε � 2 − t ≤ 1 =⇒ 16 − t2 � ε.

Part (c)

(c.1) Regular expansion. Substituting y ∼
∑

εnyn(x) into the equation yields

2 (sinx)3/2

(

yn√
sin x

)′
= 2 sin x y′n − cos x yn = y′′n−1 for n > 1, (3.7)

with 2 sin x y′0 − cos x y0 = 0. Thus y0 = cr

√
sin x =⇒ . . . . . . . . . . . . . . . . . . . . . . . . y ∼ cr

√
sin x,

where cr is some constant.

Furthermore, it is easy to see that yn = O
(

x0.5−2 n
)

for 0 ≤ x � 1.

Then, from the condition ε yn+1 � yn, we conclude that . . . . . . . . . . . . validity requires x �
√

ε.
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Clearly this expansion cannot satisfy the boundary condition on the left. Below we will see that it

can neither satisfy the boundary condition on the right. Two boundary layers will be required,

one on the left in terms of the variable s =
√

(2/ε) x, and another one on the right, in terms

of the variable ζ = (x − 1)/ε. Because terms involving exponentials of ζ are missing from this

expansion, we have that . . . . . . . . . . . . . . . . . . . . . . . a further condition for validity is 1 − x � ε.

(c.2) Layer Analysis. In any layer that arises, the second derivative term in equation (3.3) must

become important (otherwise we have the situation in (c.1)). Thus the derivatives must be large

(rapid variation). For 0 < x ≤ 1, sin x > 0 and the two terms in (3.3) with derivatives will be large,

balancing each other, and producing exponential growth. Hence a layer of this type can only appear

on the right hand side of the interval of interest, and have width O(ε) — see (c.5). This analysis fails

near x = 0, because there sin x vanishes linearly, so that the second term in equation (3.3) ends up

being of invariant size under scaling. Hence for the second derivative term to become important near

x = 0 (and still have another term around to balance it), a layer of width
√

ε is needed — see (c.3).

(c.3) Boundary Layer at x = 0. The natural scaling to make the first two terms in equation (3.3)

of the same size is t = x/
√

ε. Then the equation becomes:

d2 y

d t2
− 2 t

(

1 − 1

6
ε t2 + O(ε2 t4)

)

d y

d t
+
(

1 − 1

2
ε t2 + O(ε2 t4)

)

y = 0, (3.8)

whose leading order is a parabolic-cylinder equation ÿ0 − 2 t ẏ0 + y = 0. To solve this equation,

let us first eliminate the first derivative term in the standard fashion: let y0 = u exp
{

t2/2
}

.

Then ü + (2 − t2) u = 0. Finally, s =
√

2 t =
√

(2/ε) x yields

d2 u

d s2
−
(

1

4
s2 − 1

)

u = 0, (3.9)

which is a standard form for the parabolic-cylinder equation.3 Only the solutions that decay as

s → ∞ are acceptable, hence u = c0 U(−1, s), where c0 is a constant to be determined by the

boundary condition at x = 0. Since U(−1, 0) =
√

π 21/4/Γ(1/4), it follows that the leading order

3See chapter 19 in Handbook of Mathematical Functions, by Abramowitz and Stegun — published by Dover.

U(a, x) is defined in 19.3.1, the value U(a, 0) is given in 19.3.5, and the asymptotic behavior is given in 19.8.1.



18.305 MIT, Fall 2005 (Margetis & Rosales). Problem Set # 6. 11

approximation for the solution in the left boundary layer is given by

y ∼ 2
Γ(1/4)

21/4
√

π
U(−1, s) exp

{

1

4
s2
}

, where s =

√

2

ε
x. (3.10)

(c.4) Matching of the left boundary layer in (c.3) and the regular expansion in (c.1). Since

we have U(−1, s) ∼
√

s e−s2/4 for s � 1, the approximation in (3.10) yields

y ∼ 2
Γ(1/4)

21/4
√

π

√
s = 2

Γ(1/4)

ε1/4
√

π

√
x.

This will match the expansion in (c.1) provided we take cr = 2
Γ(1/4)

ε1/4
√

π
. Hence, the leading order

approximation for the solution, valid in the region x �
√

ε and 1 − x � ε, is given by

y ∼ 2
Γ(1/4)

ε1/4
√

π

√
sin x. (3.11)

IMPORTANT: note the factor ε1/4 in the denominator. The solution is big!

(c.5) Boundary Layer at x = 1. Introduce the variable ζ = (x − 1)/ε. Then the equation be-

comes
d2 y

d ζ2
− 2 sin(1 + ε ζ)

d y

d ζ
+ ε cos(1 + ε ζ) y = 0. (3.12)

The leading order solution for this will have the form y ∼ a + b exp {2 sin(1) ζ}, where a and b are

constants. For the boundary condition to be satisfied we need that a + b = ε−1/4. On the other

hand, as ζ becomes large and negative, this solution should match with the behavior (as x → 1) of

the one in equation (3.11). Hence a = 2
Γ(1/4)

ε1/4
√

π

√

sin(1). It follows that the leading order behavior

for the solution in the right boundary layer is given by

y ∼ ε−1/4
[

µ + (1 − µ) exp {2 sin(1) ζ}
]

, where µ = 2
Γ(1/4)√

π

√

sin(1) and ζ =
x − 1

ε
. (3.13)

REMARK: This problem was “cooked” so that the solution is “simple”. If an O(1) value for the

boundary condition on x = 1 had been given, like y(1) = 1, then the expansion would have been a

bit more complicated — why?

THE END.


