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1 Airy functions integrals (statement).

Consider three paths in the complex plane with the following properties:

• Γ1 goes from |z| = ∞ along the radial line arg(z) = (5/6)π to |z| = ∞ along the radial line

arg(z) = (1/6)π.

• Γ2 goes from |z| = ∞ along the radial line arg(z) = (3/2)π to |z| = ∞ along the radial line

arg(z) = (1/6)π.

• Γ3 goes from |z| = ∞ along the radial line arg(z) = (5/6)π to |z| = ∞ along the radial line

arg(z) = (3/2)π.

In the lectures it was shown that

Ai(x) =
1

2π

∫

Γ1

ei(xz+ 1

3
z3) dz and Bi(x) =

1

2πi

∫

Γ2

ei(xz+ 1

3
z3) dz + c.c.. (1.1)

are both solutions of the Airy equation y′′ = xy, where c.c. denotes the complex conjugate.
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Show that the above are equivalent to:

Ai(x) =
1

π

∫
∞

0
cos

(

xt +
1

3
t3
)

dt, (1.2)

and

Bi(x) =
1

π

∫
∞

0
sin

(

xt +
1

3
t3
)

dt +
1

π

∫
∞

0
exp

(

xt − 1

3
t3
)

dt. (1.3)

Solution to the Airy functions integrals problem.

We wish to express the given integrals in terms of real functions, so we investigate how we can

deform the path of integration, preserving the convergence of the integral as well. For fixed x, we

have convergence when the contour is deformed in regions of the complex plane that satisfy

<
{

iz3
}

= −r3 sin(3 θ) ≤ 0 as |z| = r → ∞, where θ = arg (z) .

The convergence regions are thus

0 ≤ θ ≤ π/3, 2π/3 ≤ θ ≤ π, and 4π/3 ≤ θ ≤ 5π/3.

These are the unshaded regions in figure 1.1. By deforming the contour within these regions, we

are guaranteed that the contributions from the “circular” arcs in the path go to zero at infinity.

Guided by this figure, we deform Γ1 to the real line, so that

Ai(x) =
1

2π

∫

Γ1

ei(xz+z3/3) dz

=
1

2π

(∫ +∞

0
ei(xt+t3/3) dt +

∫ 0

−∞

ei(xt+t3/3) dt
)

=
1

2π

∫ +∞

0

(

ei(xt+t3/3) + e−i(xt+t3/3)
)

dt

=
1

π

∫ +∞

0
cos

(

xt + t3/3
)

dt.
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Figure 1.1:

Contour Deformation for the Airy integrals.

Likewise, Γ2 can be deformed into the path consisting of the negative imaginary axis (z = it, with

−∞ < t < 0), followed by the positive real axis (z = t, with 0 < t < ∞) — see figure 1.1. This gives

Bi (x) =
1

2πi

∫

Γ2

ei(xz+z3/3) dz + c.c.

=
1

2π

(∫ 0

−∞

e−(xt−t3/3) dt +
1

i

∫ +∞

0
ei(xt+t3/3) dt

)

+ c.c.

=
1

π

∫ +∞

0
ext−t3/3 dt +

1

π

∫ +∞

0
sin

(

xt + t3/3
)

dt,

where c.c. denotes the complex conjugate.

2 Airy functions expansions (statement).

In the lectures we showed that the exponentially decaying solutions for the Airy equation ε2 y′′ = xy

(for x > 0 and 0 < ε � 1), had an asymptotic expansion of the form

y ∼ x−1/4

(
∞∑

0

an (ε/ζ)n)

)

e−ζ/ε where ζ =
2

3
x3/2. (2.1)

Part (a) Calculate the coefficients an, assuming that a0 = 1.

For x < 0 the solutions admit asymptotic expansions of the form

y ∼ |x|−1/4

(
∞∑

0

dn (ε/η)n

)

eiη/ε (2.2)

and its complex conjugate, where η =
2

3
|x|3/2.

Part (b) Calculate the coefficients dn, assuming that d0 = 1.
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Solution to the Airy functions expansions problem.

The solution to part(b) is the same as the solution to ε2y′′ = −x y — with x > 0. This allows us

to do just one computation and get both series, by using the WKB expansion

y± ∼
(

3ε

2
τ
)−1/6

e−β±τ
∞∑

n=0

b±n τ−n, with τ =
2

3ε
x3/2,

to solve y′′ = ±xy, where b+
n = an, b−n = dn, β+ = 1, and β− = −i. The problem is simplified by

the change of variable x → τ . Then the equation becomes

d2y

dτ 2
+

1

3τ

dy

dτ
= ±y.

Write now y± = w±(τ) e−β±τ — where we expand w± ∼
(

3ε

2

)−1/6 ∞∑

n=0

b±n τ−n−1/6. Then

2β±

dw±

dτ
+

β±

3 τ
w± =

d2w±

dτ 2
+

1

3 τ

dw±

dτ
.

Substituting into this equation the expansion for w± above, and equating equal powers of τ , we

then get the following recursion relation for the coefficients b±n

b±n = −(n − 1/6)(n − 5/6)

2 n β±

b±n−1.

Hence, since b±0 = 1, we have

b±n =

(

− 1

2 β±

)n
Γ(n + 1/6) Γ(n + 5/6)

Γ(1/6) Γ(5/6) n!
=

(

− 1

2 β±

)n
Γ(n + 1/6) Γ(n + 5/6)

2 π n!
,

where we have used the fact that Γ(1/6) Γ(5/6) = 2 π. Hence, since an = b+
n and dn = b−n ,

an =
(

−1

2

)n Γ(n + 1/6) Γ(n + 5/6)

2 π n!
and dn =

(

− i

2

)n Γ(n + 1/6) Γ(n + 5/6)

2 π n!
.

3 Generic 2nd order equation WKB (statement).

Let 0 < ε � 1, and consider the second order ODE

ε2 y′′ + εa y′ + hy = 0, (3.1)
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where a = a(x) and h = h(x) are some given functions.

(a) Use a WKB-like approach to get asymptotic expansions for the solutions of this equation.

(b) Where do you expect the expansions obtained in the prior step to break down? Explain.

Note: The expansions will have the form y ∼ A eS, where S is appropriately selected and A has an

expansion of the form A ∼ A0(x) + εA1(x) + ε2A2(x) + . . .. You should write the equations satisfied

by the An.

Solution to the Generic 2nd order equation WKB problem.

Part (a): Substituting y = eS into the equation yields ε2
(

S ′′ + (S ′)
2
)

+ εS ′a + h = 0. Dominant

balance (something has to balance the last term h in this equation) suggests that we should expand

S ∼ 1

ε
S0 + S1 + ε S2 + . . . Alternatively we may write

y = A eS0/ε, (3.2)

with A = eS−S0/ε ∼ A0 + ε A1 + ε2 A2 + . . . Define λ = S ′

0 and substitute (3.2) into (3.1). Thus

(

λ2 + λa + h
)

A + ε {2 λ A′ + λ′ A + a A′} + ε2 A′′ = 0. (3.3)

The leading order O(ε0) in this equation yields λ2 + λ a + h = 0 ⇒ λ = −1

2
a ± 1

2

√
a2 − 4h.

Hence we get two solutions (as expected) except when

a2 − 4h = (a + 2λ)2 = 0. (3.4)

The O(ε) terms in equation (3.3) yield an equation determining A0

(a + 2 λ) A′

0 + λ′ A0 = 0, (3.5)

while the higher order terms yield equations determining the An’s, for n > 0. Namely

(a + 2 λ) A′

n + λ′ An = −A′′

n−1. (3.6)
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We notice that these equations — i.e. (3.5 – 3.6) — recursively determine the coefficients An, except

when equation (3.4) holds.

To find the leading order WKB solution, we note that

A′

0

A0
= −1

2

(a + 2 λ)′

a + 2 λ
+

1

2

a′

a + 2 λ
.

Hence, using the fact that a + 2 λ = ±
√

a2 − 4 h — see equation (3.4), we obtain

A0 = c |a2 − 4h|−1/4 exp

(

±1

2

∫ x a′

√
a2 − 4h

ds

)

,

where c is a constant. It follows that

y ∼ c |a2 − 4h|−1/4 exp

{

1

2 ε

∫ x
(

−a ±
√

a2 − 4h ± ε
a′

√
a2 − 4h

)

ds

}

.

Part (b): Notice that the An’s become successively more singular near the points where a + 2 λ

vanishes. Hence, from (3.4), the expansion breaks down at the points where

a2 − 4h = 0.

At the points where a2 − 4h has a simple zero, the solution switches from oscillatory on one side

of the zero, to exponential on the other side. The Airy equation gives an example of this for a zero

at the origin — a = 0 and h = x.

4 WKB expansion for a 3-rd order equation (statement).

Let 0 < ε � 1, and consider the 3-rd order ODE

ε3 d3y

dx3
+ V y = 0, (4.1)

where V = V (x) is some given function.

(a) Use a WKB-like approach to get asymptotic expansions for the solutions of this equation.
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(b) Where do you expect the expansions obtained in the prior step to break down? Explain.

(c) Consider the case V = −x, and x > 0. What is the condition for validity of these expansions?

Note: The expansions will have the form y ∼ A eS, where S is appropriately selected and A has

an expansion of the form A ∼ A0(x) + εA1(x) + ε2A2(x) + . . .. For part (a) you should provide

expressions for S and (at least) the leading order term A0. For part (c) the An will be powers of x,

and your answer should take the form that the expansions are valid provided εµ � x, for some µ.

Solution of the WKB expansion for a 3-rd order equation.

Part (a): As usual, the substitution y = eS — and use of dominant balance — leads to the

ansatz y = A eS0/ε, with S ′

0 = λ, and λ3 = −V . This gives three solutions, except at

points where V vanishes. The equation for A is then

3 λ2 A′ + 3 λ λ′ A
︸ ︷︷ ︸

3 λ (λ A)′

+ ε (λ′′ A + 3 λ′ A′ + 3 λ A′′) + ε2 A′′′ = 0.

Hence expanding A = A0 + ε A1 + . . . we get (for some arbitrary constant c)

3 λ (λ A0)
′ = 0 ⇒ A0 = c/λ. (4.2)

Likewise, A1 satisfies

3 λ (λ A1)
′ + λ′′ A0 + 3 λ′ A′

0 + 3 λ A′′

0 = 0.

In general, for n > 1

3 λ (λ An)
′ +

(

λ′′ An−1 + 3 λ′ A′

n−1 + 3 λ A′′

n−1

)

+ A′′′

n−2 = 0.

Part (b): It should be clear from (4.2) that the expansion fails when λ = 0 — i.e. when V

has a zero. At these points the expansion predicts that the solutions to the equation reach infinity.

This, obviously, does not happen — since the solutions to the equation are perfectly regular near

points where V vanishes.
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Part (c): Let V = −x with x > 0. Then λ3 = x — i.e. λ = σ x1/3, with σ3 = 1. Thus

S0 =
3

4
σ x4/3

so that y ∼ A exp
(

3

4 ε
σ x4/3

)

, where A satisfies

3 σ2 x1/3
(

x1/3 A
)′

+ ε
[

3 σ
(

x1/3 A′
)′ − 2

9
σ x−5/3 A

]

+ ε2 A′′′ = 0.

It is easy to see that this leads to an expansion of the form

A ∼
∞∑

n=0

εn an x−(1+4n)/3,

for some coefficients a0, a1, a2, . . . Thus the n-th term in this expansion has size

x−1/3
(

ε x−4/3
)n

.

Hence for each term to be smaller than the next we need

ε x−4/3 � 1.

Thus the condition for validity of the expansion is that x � ε3/4.

Remark 4.1 It is interesting to consider what happens for a more general type of zero for V . Thus,

assume V = −xµ for x > 0, for some µ > 0. It is easy to see that this leads to a solution of the

asymptotic expansion of the form

A ∼
∞∑

n=0

εn an x−
1

3
µ−n α,

where α = 1 +
1

3
µ, and the an’s are some coefficients. This is then valid provided that x � ε1/α.

THE END.


