
Problem Set # 07, 18.300 MIT (Spring 2022)

Rodolfo R. Rosales (MIT, Math. Dept., room 2-337, Cambridge, MA 02139)

April 23, 2022

Due: Mon May 2 (turn it in via the canvas course website).

Note #1: Problem 4 (Experiments with a slinky) is part of problem set #8. It is posted here so you can

start early with it. Please, do! (Do not include its answer with the answer to problem set #7).

Note #2: Note that the first problem was posted with the prior problem set.

Note #3: Problem set #08 will be due the day of the last lecture,

and will be posted in a few days ∼5-7

Contents

1 Computer Exercise in Fourier Series 1

Study the convergence properties of Fourier series. In particular, the

effect of singularities (lack of smoothness) in the function . 1

1.0.1 Introduction: Fourier Series . 1

1.0.2 The problem to be done . 2

2 N torsion coupled pendulums, and continuum limit as N →∞ 3

3 Normal matrices 4

4 Experiments with a slinky 5

1 Computer Exercise in Fourier Series

Statement: Computer Exercise in Fourier Series

1.0.1 Introduction: Fourier Series

Generally, a 2π-periodic function F = F (x) can be

expressed in terms of its Fourier Series F (x) =

∞∑
n=−∞

Fn e
i n x, (1.1)

where the nth complex Fourier coefficient Fn is defined by

Fn =
1

2π

∫ π

−π
F (x) e−i n x dx, n = 0, ±1, ±2, ±3, . . . (1.2)

An alternative formulation, obtained upon using

e−i n x = cos(nx)− i sin(nx), is given by: F (x) = c0 +

∞∑
n=1

(cn cos(nx) + sn sin(nx)), (1.3)

where: (i) c0 = F0 and cn = (Fn + F−n) are

the cosine Fourier coefficients, and (ii) sn = i (Fn − F−n) are the sine Fourier coefficients. Thus

c0 =
1

2π

∫ π

−π
F (x) dx, (1.4)

cn =
1

π

∫ π

−π
F (x) cos(nx) dx, for: n = 1, 2, 3, . . . (1.5)

sn =
1

π

∫ π

−π
F (x) sin(nx) dx, for: n = 1, 2, 3, . . . (1.6)

If F is real valued, then F−n is the

complex conjugate of Fn, so that cn = 2 Re (Fn) and sn = −2 Im (Fn) for n > 0. (1.7)

1

2

Generally, the issue of how well (or even in which sense), the Fourier Series in (1.1) or in (1.3) converges to the

function F is a rather subtle one. The main point of this problem is to conduct a numerical exploration of some

aspects of this question. In particular,

consider the partial sums: FN(x) = c0 +

N∑
n=1

(cn cos(nx) + sn sin(nx)), (1.8)

where N is some natural number.

Important questions are then: How well does FN approximate the function F ? and How big is the error 1 and

how fast does it vanish as N →∞?

Remark 1.1 An important element in answering the questions above is how fast the Fourier coefficients vanish as

n→∞. This is determined by how fast the

power spectrum Pn =
1

2
|Fn| =

√
c2n + s2n (1.9)

vanishes as n→∞ (assume F is real valued, so that (1.7) applies).

Pn gives information on “how important” the n-th mode is in the Fourier Series. The name follows from the fact

that in many physical situations one can interpret the square of the amplitude of the n-th Fourier coefficient, P 2
n , as

the amount of energy in the n-th mode of the solution — e.g.: for the wave equation.

1.0.2 The problem to be done

This problem objective is to “experimentally” study how Fourier series converge. For this purpose you should use

the following MatLab scripts

FouSerRedame.m fourierSC.m FSFun.m FSoption.m FSoptionP.m heatSln.m MakeButtonFSC.m

Put the scripts in a directory and start MatLab there. The help command will work as usual, in particular: help

FouSerReadme gives a description of all the scripts. Each script has its own detailed description. The script you

need is fourierSC. The others (except for heatSln) are helper scripts.

IMPORTANT:

• When you start the script fourierSC, it will ask you the questions:

A. Do you want to use the fancy (with buttons) or the plain interface?

B. Up to how many terms in the Fourier series do you want to compute?

C. For which values you want to plot?

About B and C: Calculations will be done (and the results shown) for the partial sums in (1.8), for the values

N = 0, Nskip, 2*Nskip, . . . , Np. You will be asked to input Nskip and Np. About A: the fancy version does not

work for some versions of MatLab.

• After you finish answering the questions, fourierSC will present you with a list of options for functions whose

Fourier series it can compute: “user’s choice”, and pre-selected. Check the scripts code to make sure you

that understand exactly which functions you are dealing with.

• The script FSFun.m is the one used to input the “user’s choice” selection — whatever function you program

there will be the one used when “user’s choice” is selected. A trivial example is pre-programmed in FSFun.m,

but you should alter it, and write there any function for which you want to investigate the Fourier series, to

go beyond the preselected options, which I encourage you to do.

• The pre-selected options include smooth functions, as well as functions with various types of singular behaviors

— discontinuities, corners and cusps. The idea is to investigate how any particular ”singular” behavior in the

function is related to the convergence properties of its Fourier series.

A cusp is a singularity such as the one that
√
|x| has at the origin. Other possibilities are |x|α, where

0 < α < 1. Investigate the effect of singularities of this type on the convergence.

The most important singular behavior whose effect on the Fourier series you should elucidate is that of

a discontinuity. How does it affect the convergence? How do the partial sums look like in this case? Is there

any peculiar behavior you can observe?

1 Note also that there are many ways that the error can be measured: point-wise; least-squares; etc.

3

Odd an even functions are also provided in the pre-selections, so that you can see what effect symmetries of the

function have on its Fourier series. Can you think of other symmetries?

• The script fourierSC makes lots of plots, which will be made one on top of the other. You need to move the

windows to see all the plots. These plots illustrate various aspects of how a Fourier series behaves, as

follows (this is the order in which the plots are done):

– Exact function whose Fourier series is being computed.

– Sine Fourier coefficients sn, as a function of n.

– Cosine Fourier coefficients cn, as a function of n.

– Semi-log plot of the power spectrum Pn =
√
c2n + s2n as a function of n — exponential decay yields

a straight line in this kind of plot.

– Log-log plot of the power spectrum as a function of n — algebraic decay yields a straight line in this

kind of plot.

– Partial sums FN = FN(x) — as in equation (1.8) — for N = 0:Nskip:Np. All these plots will be shown

in the same window, so you must look at them as they are done.

– Relative error in the approximation FN , as a function of N — shows the error in the partial sums in

(1.8), as a function of N , for N = 1:Np.

– Semi-log plot of the relative error, as a function of N .

– Log-log plot of the relative error, as a function of N .

This is what you are expected to do: Use the script fourierSC and experiment with the various choices. Then

report any “pattern” or peculiar behavior you observe in the way Fourier series converge. The plots are useful in

figuring out how fast things converge (e.g. how fast do the Fourier coefficients vanish as n→∞). Look at the plots,

look for patterns and trends. Make hypothesis as to what is happening and test them by further experimentation

— use the script FSFun to produce functions where you can test your hypothesis. Write your conclusions in the

answers. Describe the evidence for your conclusions — no proof is required, numerical evidence is enough, but you

must produce, and describe, the evidence! Think of it in the same way that you would think in the situation of a

lab experimenter trying to figure out what happens in some problem. A few plots with your answer are fine, but

please, just a few!

Important: the point of this problem is not for you to run code and show pretty pictures of what you see. I want

you to arrive at quantitative conclusions about how Fourier series converge, etc. The plots for the pre-programmed

functions will show you patterns that you need to recognize, and test with other functions to identify what causes

them. I expect statements that sound like this: “if a function has the following property ... (discontinuity, cusp,

corner, whatever), then the power spectrum decays like ...; the error in FN behaves like ...; etc.”

Important: Anything smaller than about 10−14 is numerical error. Ignore it!

2 N torsion coupled pendulums, and continuum limit as N →∞

Statement: N torsion coupled pendulums, and continuum limit as N →∞
Generalize the result of the problem “Two torsion coupled pendulums” to the case where there are N equal rods

attached to the axle (equally spaced along it, so that they are a distance `/(N + 1) from each other and from the axle’s

ends), each with a mass M/N at its end.

Let x be the length coordinate along the axle. Label the rods (starting from one end of the axle, at which we set

x = 0) by the integers n = 1, . . . , N . Then the nth rod corresponds to the position x = xn =
n

N + 1
` along the axis,

and it is characterized by the angle θn = θn(t).

4

Consider now the limit N →∞. Look at solutions for which you can write θn(t) = θ(xn, t), where θ = θ(x, t)

is a “nice” function (i.e.: θ has as many derivatives as you need, so that Taylor expansions are valid). Derive a

P.D.E. 2 for the function θ = θ(x, t).

Hint 2.1 (For the continuum limit N → ∞). (i) The pendulum masses, M/N , scale with N so as to produce a

constant mass per unit length (density) ρ = M/` in the limit N →∞. (ii) The pendulum positions, xn = n `/(N+1),

approach a continuous distribution as N → ∞. (iii) See the hint in the problem “Pendulum with torsion” for the

appropriate way in which the torsional force between any two neighboring rods scales with N . (iv) Note that, in the

limit N → ∞, angle differences such as θn+1 − 2 θn + θn−1, can be approximated in terms of derivatives of θ with

respect to x (Taylor expand θn±1 centered at xn).

3 Normal matrices

Statement: Normal matrices

A (square) matrix is normal if it commutes with its adjoint. That is: 3 A ∗A† = A† ∗A. (3.1)

We know that normal matrices have an orthonormal basis of eigenvectors.

Note #1.

A square matrix A is normal if and only if it can be written in the form A = U ∗D ∗ U†, (3.2)

where D is diagonal, and U is unitary — unitary means U† = U−1.

Proof. (Here we will use that (A ∗B)† = B† ∗A†).

(a) If (3.2) applies, A ∗ A† = (U ∗D ∗ U†) ∗ (U ∗D ∗ U†)† = (U ∗D ∗ U†) ∗ (U ∗D† ∗ U†) = U ∗D ∗D† ∗ U†.

Similarly A† ∗A = U ∗D† ∗D ∗ U†. But D is diagonal, so that D ∗D† = D† ∗D. Hence A is normal.

Note that the diagonal elements of D are the eigenvalues of A. ‡ ♣
‡ Why? Let ~un be the n-th column of U . Then U† ∗ U = I = identity implies that U† ~un = {δnj} = vector

with all entries zero but a 1 on the n-th one. Hence A~un = λn~un, where λn is the n-th diagonal element in D.

(b) Suppose now that A is normal, and let {~un}Nn=1 be an

orthonormal basis of eigenvectors. Hence A~un = λn ~un and ~u†
m ∗ ~un = δmn, (3.3)

where the λn are the eigenvalues (complex constants),

and δnm is the Kronecker delta. Then, for any vector ~v =
∑

(~u†
n ∗ ~v) ~un ⇒ A~v =

∑
λn(~u

†
n ∗ ~v) ~un. (3.4)

Let U = matrix whose columns are the un, and D =

diagonal matrix with diagonal elements λn. Then the second equality in (3.4) yields A~v = U ∗D ∗ U†~v. Since ~v is

arbitrary, this means that (3.2) applies. Finally: U is unitary because of the second equality in (3.3). ♣

Note #2.

Let A be a square matrix such that A† = p(A), where p is a polynomial. Then A is normal. (3.5)

Proof. Obvious, since A and p(A) commute.

Your task in this problem. Show that if A is normal, then A† = p(A) for some polynomial. (3.6)

Hint. Consider a polynomial such that p(λn) = λ̄n for the eigenvalues of A (such polynomials exist: see Lagrange

polynomial interpolation).

2 The equation you will obtain is known as the Sine-Gordon equation.
3 We use ∗ to denote matrix multiplication, and † to denote the adjoint (transpose conjugate).

5

4 Experiments with a slinky

Statement: Experiments with a slinky

Consider a homogeneous cylindrical rod (made of an elastic material), subject to (small amplitude) longitudinal

deformations. Let x be the length coordinate (measured along the axis of the cylinder) when the cylinder is in its

relaxed position. Use x as a label for the mass elements in the cylinder. 4 For every mass element x, let u = u(x, t)

be its position at time t, measured along the axis of the cylinder (note that u = x corresponds to the cylinder at rest.)

Then u describes the state of the cylinder at any time and obeys the wave equation:

utt − c2 uxx = 0, where c =
√
k/ρ. (4.1)

Here ρ is the density (mass per unit length) of the rod, and k characterizes the elastic response of the material: if we

stretch the cylinder by an amount ∆L, then the elastic force is k
∆L

L
, where L is the length of the rod (note that k

has the dimensions of a force, thus c is a speed).

Remark 4.1 The basic assumption here is that the cylinder remains at all times within the regime of applicability

of Hooke’s law. This means that the deformations (given by ux − 1) are small enough everywhere. In particular, this

also implies that variations in the cross-section of of the cylinder can be ignored (e.g.: if volume is preserved, the

cross section will be larger in regions under compression than in those under tension).

In the derivation of equation (4.1) it is assumed that the elastic forces are dominant, so that other forces (e.g.:

gravity) can be ignored. For a rod with a vertical orientation, such that the elastic forces are not dominant over

gravity, equation (4.1) must be modified to:

utt − c2 uxx = −g, (4.2)

where g is the acceleration of gravity, and we assume that the vertical coordinate x increases upwards. In particular,

consider the case of a rod hanging vertically without any motion (i.e.: u = u(x), with no time dependence), and

measure x from the bottom of the rod. Then:

u = 0 and ux = 1 at x = 0, (4.3)

where the second equation follows because there is no force at the lower end (no section of the rod below that must

be supported). Then the equation for u = u(x), namely:

c2 ux x = g,

can be integrated to yield:

u =
g

2c2
x2 + x. (4.4)

A particular example where this should apply to is that of a slinky. One objective of this problem is for you to

check how well a slinky obeys equation (4.4).

Proceed as follows:

1. Get a slinky in good condition and draw a straight line along its edge, parallel to the slinky’s axis. Draw the

line so that, when it reaches one end (the “bottom” end), it does so at the end of the coil that makes the

slinky — i.e.: no more coil beyond the mark.

2. Starting from the “bottom” end of the slinky, name the points at which each coil is marked by the line as

n = 0, 1, . . . Then (if w is the width of a coil) when the slinky is at rest, the position of the nth point is given by

xn = nw.

4 Since we are considering only longitudinal motions, points in a cross section move in unison and we need not label them separately.

6

3. To find w, measure the total length of the slinky, and divide this by the number of coils. You can also easily

measure the “density” ρ of the coil by weighting it and dividing the result by its length.

4. Hang the slinky in a vertical position 5 (with the bottom end down) and wait till it is at rest. Then measure

the distance un of the nth point from the point n = 0 at the bottom. One way to do this is to have a measuring

tape on a wall right behind the hanging slinky.

5. Equation (4.4) predicts that

un =
g

2c2
x2n + xn =

gρ

2k
x2n + xn. (4.5)

6. The question is now: How well does equation (4.5) match your measurements? Of course, you do not have k,

but you will have several values of n. If (4.5) applies, then

un+1 − un = ∆un =
g ρ

k
w2 n+

g ρ

2 k
w2 + w.

Thus a plot of un+1 − un versus n should give a straight line with slope g ρw2/k. From this you can get k,

which is the hardest quantity to measure directly in this context.

Next suspend the slinky from one end and set it to vibrate (longitudinally). In this case, if we set the origin for the

coordinate x at the top (where the slinky does not move), the governing equation will still be (4.2), but the boundary

conditions are now:

u(0, t) = 0 and ux(−L, t) = 1, (4.6)

where L is the length of the slinky in its rest state. The first condition here follows because x = 0 corresponds to

the clamped end at the top, while the second simply states that there are no elastic forces at the bottom end (same

reason used when deriving the second condition in (4.3)). It is easy to see that these conditions (and the equation)

are satisfied by the function

u = a sin
(π

2L
x
)

sin
(c π

2L
t
)

+
g

2 c2
x2 +

(
1 +

g L

c2

)
x, (4.7)

where a is an arbitrary constant. This solution corresponds to an oscillation with period T =
4L

c
.

Now, continue the experiment:

7. In the situation described in the paragraph above, measure the period of the slinky — do not try to measure

a single period, time several and then divide by the number of periods timed.

8. Compare the result of your measurement of the period with the one given by the formula for T above — from

the prior steps you can obtain a value for c.

9. Discuss the results of your experiment.

THE END.

5 For example, staple it to the underside of a shelf by a wall.

