Problem Set # 04, 18.300 MIT (Spring 2022)

Rodolfo R. Rosales (MIT, Math. Dept., room 2-337, Cambridge, MA 02139)

March 9, 2022

Due: Fri March 18 (turn it in via the canvas course website).

Contents

1	Haberman 7401. Solve initial value problem	1
2	Haberman 7402. Solve initial value problem	1
3	Haberman 7701. Shock velocity when $u=u(\rho)$ is linear Shock velocity is average of characteristic velocities for $u=u(\rho)$ linear	2
4	Haberman 7902. Shock velocity	2
5	KiNe03. Initial value problem with Q quadratic Similarity solution (case with no shock)	2
6	Linear 1st order PDE (problem 09) Surface evolution. Solve $h_t = (A/r)h_r$	3

1 Haberman 7401. Solve initial value problem

Statement: Solve initial value problem

Assume that $u(\rho) = u_m (1 - \rho/\rho_j)$, where u_m is the speed limit and ρ_j is the jamming density. For the initial conditions:

$$\rho(x, 0) = \begin{cases}
\rho_0 & \text{for } x < 0, \\
\rho_0 (L - x)/L & \text{for } 0 \le x \le L, \\
0 & \text{for } L < x,
\end{cases}$$
(1.1)

where $0 < \rho_0 < \rho_j$ and 0 < L, determine and sketch $\rho(x, t)$.

2 Haberman 7402. Solve initial value problem

Statement: Solve initial value problem

Assume that $u(\rho) = u_m (1 - \rho^2/\rho_j^2)$, where u_m is the speed limit and ρ_j is the jamming density. For the initial conditions:

$$\rho(x, 0) = \begin{cases}
\rho_0 & \text{for } x < 0, \\
\rho_0 (L - x)/L & \text{for } 0 < x < L, \\
0 & \text{for } L < x,
\end{cases}$$
(2.1)

where $0 < \rho_0 < \rho_j$ and 0 < L, determine and sketch $\rho(x, t)$.

3 Haberman 7701. Shock velocity when $u = u(\rho)$ is linear

Statement: Shock velocity when $u = u(\rho)$ is linear

If $u = u_{\text{max}} (1 - \rho/\rho_{\text{max}})$, what is the velocity of a traffic shock separating the densities ρ_0 and ρ_1 ? Simplify the expression as much as possible. Show that the shock velocity is the average of the density wave velocities associated with ρ_0 and ρ_1 .

4 Haberman 7902. Shock velocity

Statement: Shock velocity

Suppose that

Determine the velocity of the shock. Briefly give a physical
explanation of the result. What does this shock correspond to?

$$\rho(x, 0) = \begin{cases} \rho_0 & \text{for } x > 0, \\ 0 & \text{for } x < 0. \end{cases}$$
 (4.1)

5 KiNe03. Initial value problem with Q quadratic

Statement: Initial value problem with Q quadratic

Consider the traffic flow equation

$$\rho_t + q_x = 0, (5.1)$$

for a flow $q = Q(\rho)$ that is a quadratic function of ρ . In this case $c = dQ/d\rho$ is a conserved quantity as well (why?). Thus the problem (including shocks, if any) can be entirely formulated in terms of c, which satisfies

$$c_t + \left(\frac{1}{2}c^2\right)_x = 0. (5.2)$$

1. Consider the initial value problem determined by (5.2) and ¹

$$c(x, 0) = 0 \text{ for } x \le 0 \text{ and } c(x, 0) = 2\sqrt{x} \ge 0 \text{ for } x \ge 0.$$
 (5.3)

Without actually solving the problem, argue that the solution to this problem must have the form

$$c = t f(x/t^2)$$
 for $t > 0$, for some function f . (5.4)

Hint. Let c = c(x, t) be the solution. For any constant a > 0, define $\mathcal{C} = \mathcal{C}(x, t)$ by $\mathcal{C} = \frac{1}{a} c(a^2 x, a t)$. What problem does \mathcal{C} satisfy? Use now the fact that the solution to (5.2-5.3) is unique to show that (5.4) must apply, by selecting the constant a appropriately at any fixed time t > 0.

- 2. Use the method of characteristics to solve the problem in (5.2-5.3). Write the solution explicitly for all t > 0, and verify that it satisfies (5.4). Warning: the solution involves a square root. Be careful to select the correct sign, and to justify your choice.
- 3. For the solution obtained in item 2, evaluate c_x at x = 0 for t > 0. Note that this derivative is discontinuous there, so it has two values (left and right).

 $^{^1}$ In a traffic problem, c must satisfy $c(
ho_j) \leq c \leq c(0)$. Ignore the fact that this does not apply for (5.2).

6 Linear 1st order PDE (problem 09)

Statement: Linear 1st order PDE (problem 09)

Surface Evolution. The evolution of a material surface can (sometimes) be modeled by a pde. In evaporation dynamics, where the material evaporates into the surrounding environment, consider a surface described in terms of its "height" h = h(x, y, t) relative to the (x, y)-plane of reference. Under appropriate conditions, a rather complicated pde can be written 2 for h. Here we consider a (drastically) simplified version of the problem, where the governing equation is

$$h_t = \frac{A}{r} h_r$$
, for $r = \sqrt{x^2 + y^2} > 0$ and $t > 0$, where $A > 0$ is a constant. (6.1)

Axial symmetry is assumed, so that h = h(r, t). Obviously, h should be an even function of r. This is both evident from the symmetry, and necessary in the equation to avoid singular behavior at the origin. Assume now

$$h(r, 0) = H(r^2),$$
 (6.2)

where H is a smooth function describing a localized bump. Specifically: (i) H(0) > 0, (ii) H is monotone decreasing. (iii) $H \to 0$ as $r \to \infty$. Note that h(r, 0) is an even function of r.

- 1. Using the theory of characteristics, write an explicit formula for the solution of (6.1 6.2).
- **2.** Do a sketch of the characteristics in space time i.e.: r > 0 and t > 0.
- **3.** What happens with the characteristic starting at $r = \zeta > 0$ and t = 0 when $t = \zeta^2/2$ A?
- **4.** Show that the resulting solution is an even function of r for all times.
- **5.** Show that, as $t \to \infty$, the bump shrinks and vanishes. **Hint.** Pick some example function H with the properties above, and plot the solution for various times. This will help you figure out why the bump shrinks and vanishes.

THE END.

 $^{^2}$ From mass conservation, with the details of the physics going into modeling the flux and sink/source terms.