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1 Haberman 7401. Solve initial value problem

Statement: Solve initial value problem

Assume that u(ρ) = um (1− ρ/ρj), where um is the speed limit and ρj is the jamming density. For the initial

conditions:

ρ(x, 0) =


ρ0 for x < 0,

ρ0 (L− x)/L for 0 ≤ x ≤ L,
0 for L < x,

(1.1)

where 0 < ρ0 < ρj and 0 < L, determine and sketch ρ(x, t).

2 Haberman 7402. Solve initial value problem

Statement: Solve initial value problem

Assume that u(ρ) = um (1− ρ2/ρ2j ), where um is the speed limit and ρj is the jamming density. For the initial

conditions:

ρ(x, 0) =


ρ0 for x < 0,

ρ0 (L− x)/L for 0 < x < L,

0 for L < x,

(2.1)

where 0 < ρ0 < ρj and 0 < L, determine and sketch ρ(x, t).

1
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3 Haberman 7701. Shock velocity when u = u(ρ) is linear

Statement: Shock velocity when u = u(ρ) is linear

If u = umax (1−ρ/ρmax), what is the velocity of a traffic shock separating the densities ρ0 and ρ1? Simplify the

expression as much as possible. Show that the shock velocity is the average of the density wave velocities associated

with ρ0 and ρ1.

4 Haberman 7902. Shock velocity

Statement: Shock velocity

Suppose that ρ(x, 0) =

{
ρ0 for x > 0,

0 for x < 0.
(4.1)

Determine the velocity of the shock. Briefly give a physical

explanation of the result. What does this shock correspond to?

5 KiNe03. Initial value problem with Q quadratic

Statement: Initial value problem with Q quadratic

Consider the traffic flow equation
ρt + qx = 0, (5.1)

for a flow q = Q(ρ) that is a quadratic function of ρ. In this case c = dQ/dρ is a conserved quantity as well (why?).

Thus the problem (including shocks, if any) can be entirely formulated in terms of c, which satisfies

ct +

(
1

2
c2
)

x

= 0. (5.2)

1. Consider the initial value problem determined by (5.2) and 1

c(x, 0) = 0 for x ≤ 0 and c(x, 0) = 2
√
x ≥ 0 for x ≥ 0. (5.3)

Without actually solving the problem, argue that the solution to this problem must have the form

c = t f(x/t2) for t > 0, for some function f. (5.4)

Hint. Let c = c(x, t) be the solution. For any constant a > 0, define C = C(x, t) by C = 1
a
c(a2 x, a t). What

problem does C satisfy? Use now the fact that the solution to (5.2–5.3) is unique to show that (5.4) must apply, by

selecting the constant a appropriately at any fixed time t > 0. ♣

2. Use the method of characteristics to solve the problem in (5.2–5.3). Write the solution explicitly for all t > 0,

and verify that it satisfies (5.4). Warning: the solution involves a square root. Be careful to select the correct sign,

and to justify your choice.

3. For the solution obtained in item 2, evaluate cx at x = 0 for t > 0. Note that this derivative is discontinuous

there, so it has two values (left and right).

1 In a traffic problem, c must satisfy c(ρj) ≤ c ≤ c(0). Ignore the fact that this does not apply for (5.2).
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6 Linear 1st order PDE (problem 09)

Statement: Linear 1st order PDE (problem 09)

Surface Evolution. The evolution of a material surface can (sometimes) be modeled by a pde. In evaporation

dynamics, where the material evaporates into the surrounding environment, consider a surface described in terms of

its “height” h = h(x, y, t) relative to the (x, y)-plane of reference. Under appropriate conditions, a rather complicated

pde can be written 2 for h. Here we consider a (drastically) simplified version of the problem, where the governing

equation is

ht =
A

r
hr, for r =

√
x2 + y2 > 0 and t > 0, where A > 0 is a constant. (6.1)

Axial symmetry is assumed, so that h = h(r, t). Obviously, h should be an even function of r. This is both evident

from the symmetry, and necessary in the equation to avoid singular behavior at the origin. Assume now

h(r, 0) = H(r2), (6.2)

where H is a smooth function describing a localized bump. Specifically: (i) H(0) > 0, (ii) H is monotone decreasing.

(iii) H → 0 as r →∞. Note that h(r, 0) is an even function of r.

1. Using the theory of characteristics, write an explicit formula for the solution of (6.1 – 6.2).

2. Do a sketch of the characteristics in space time — i.e.: r > 0 and t > 0.

3. What happens with the characteristic starting at r = ζ > 0 and t = 0 when t = ζ2/2A?

4. Show that the resulting solution is an even function of r for all times.

5. Show that, as t→∞, the bump shrinks and vanishes. Hint. Pick some example function H with the properties

above, and plot the solution for various times. This will help you figure out why the bump shrinks and vanishes.

THE END.

2 From mass conservation, with the details of the physics going into modeling the flux and sink/source terms.


