Problem Set # 04, 18.300 MIT (Spring 2022)
Rodolfo R. Rosales (MIT, Math. Dept., room 2-337, Cambridge, MA 02139)
March 9, 2022

Due: Fri March 18 (turn it in via the canvas course website).
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1 Haberman 7401. Solve initial value problem

Statement: Solve initial value problem

Assume that u(p) = um, (1 — p/p;), where u,, is the speed limit and p; is the jamming density. For the initial
conditions:

00 for = <0,
p(x,0)=¢ po(L—=z)/L for 0<z <L, (1.1)
0 for L < x,

where 0 < pp < p; and 0 < L, determine and sketch p(z, t).
__________________________________________________________________________________________________________|

2 Haberman 7402. Solve initial value problem

Statement: Solve initial value problem

Assume that u(p) = u, (1 — p2/p?), where u,, is the speed limit and p; is the jamming density. For the initial
conditions:

00 for x <0,
plx,0)=4¢ po(L—2a)/L for 0<z<L, (2.1)
0 for L < x,

where 0 < pg < p;j and 0 < L, determine and sketch p(z, t).
|
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3 Haberman 7701. Shock velocity when u = u(p) is linear

Statement: Shock velocity when u = u(p) is linear

If u = umax (1 — p/pmax), what is the velocity of a traffic shock separating the densities pg and p;? Simplify the
expression as much as possible. Show that the shock velocity is the average of the density wave velocities associated
with py and p;.

4 Haberman 7902. Shock velocity

Statement: Shock velocity

f 0

Suppose that p(z, 0) = { go fzr v Z 07 (4.1)
rox .

Determine the velocity of the shock. Briefly give a physical

explanation of the result. What does this shock correspond to?

5 KiNe03. Initial value problem with Q quadratic

Statement: Initial value problem with ) quadratic

Consider the traffic flow equation

for a flow ¢ = Q(p) that is a quadratic function of p. In this case ¢ = d@Q/dp is a conserved quantity as well (why?).
Thus the problem (including shocks, if any) can be entirely formulated in terms of ¢, which satisfies

cr + (; C2)m = 0. (5.2)

1. Consider the initial value problem determined by (5.2) and !
c(r,0)=0 for <0 and c(x,0)=2vx>0 for x> 0. (5.3)

Without actually solving the problem, argue that the solution to this problem must have the form
c=tf(z/t?) for t >0, for some function f. (5.4)
Hint. Let ¢ = c(z, t) be the solution. For any constant a > 0, define C =C(z, t) by C = %c(a2 x, at). What

problem does C satisfy? Use now the fact that the solution to (5.2-5.3) is unique to show that (5.4) must apply, by
selecting the constant a appropriately at any fixed time ¢ > 0. &

2. Use the method of characteristics to solve the problem in (5.2-5.3). Write the solution explicitly for all ¢ > 0,
and verify that it satisfies (5.4). Warning: the solution involves a square root. Be careful to select the correct sign,
and to justify your choice.

3. For the solution obtained in item 2, evaluate ¢, at & = 0 for ¢ > 0. Note that this derivative is discontinuous
there, so it has two values (left and right).

LIn a traffic problem, ¢ must satisfy c(p;) < ¢ < ¢(0). Ignore the fact that this does not apply for (5.2).



6 Linear 1st order PDE (problem 09)

Statement: Linear 1st order PDE (problem 09)

Surface Evolution.  The evolution of a material surface can (sometimes) be modeled by a pde. In evaporation
dynamics, where the material evaporates into the surrounding environment, consider a surface described in terms of
its “height” h = h(z, y, t) relative to the (z, y)-plane of reference. Under appropriate conditions, a rather complicated
pde can be written? for h. Here we consider a (drastically) simplified version of the problem, where the governing
equation is

hy = éhr, for r = \/m >0 and ¢t >0, where A >0 is a constant. (6.1)

Axial symmetry is assumed, so that h = h(r, t). Obviously, h should be an even function of r. This is both evident
from the symmetry, and necessary in the equation to avoid singular behavior at the origin. Assume now

h(r, 0) = H(r?), (6.2)
where H is a smooth function describing a localized bump. Specifically: (i) H(0) > 0, (ii) H is monotone decreasing.

(iii) H — 0 as r — co. Note that h(r, 0) is an even function of r.

1. Using the theory of characteristics, write an explicit formula for the solution of (6.1 — 6.2).
Do a sketch of the characteristics in space time — i.e.: 7 > 0 and t > 0.
What happens with the characteristic starting at » = ( > 0 and ¢t = 0 when ¢t = (2/2 A?

Show that the resulting solution is an even function of r for all times.

A

Show that, as ¢ — oo, the bump shrinks and vanishes. Hint. Pick some example function H with the properties

above, and plot the solution for various times. This will help you figure out why the bump shrinks and vanishes.

THE END.

2 From mass conservation, with the details of the physics going into modeling the flux and sink/source terms.



