Problem Set \# 04, 18.300 MIT (Spring 2022)

Rodolfo R. Rosales (MIT, Math. Dept., room 2-337, Cambridge, MA 02139)

March 9, 2022
Due: Fri March 18 (turn it in via the canvas course website).

Contents

1 Haberman 7401. Solve initial value problem 1
2 Haberman 7402. Solve initial value problem 1
3 Haberman 7701. Shock velocity when $u=u(\rho)$ is linear 2
Shock velocity is average of characteristic velocities for $u=u(\rho)$ linear 2
4 Haberman 7902. Shock velocity 2
5 KiNe03. Initial value problem with Q quadratic 2
Similarity solution (case with no shock) . 2
6 Linear 1st order PDE (problem 09) 3
Surface evolution. Solve $h_{t}=(A / r) h_{r}$. 3

1 Haberman 7401. Solve initial value problem

Statement: Solve initial value problem

Assume that $u(\rho)=u_{m}\left(1-\rho / \rho_{j}\right)$, where u_{m} is the speed limit and ρ_{j} is the jamming density. For the initial conditions:

$$
\rho(x, 0)= \begin{cases}\rho_{0} & \text { for } x<0, \tag{1.1}\\ \rho_{0}(L-x) / L & \text { for } 0 \leq x \leq L, \\ 0 & \text { for } L<x,\end{cases}
$$

where $0<\rho_{0}<\rho_{j}$ and $0<L$, determine and sketch $\rho(x, t)$.

2 Haberman 7402. Solve initial value problem

Statement: Solve initial value problem
Assume that $u(\rho)=u_{m}\left(1-\rho^{2} / \rho_{j}^{2}\right)$, where u_{m} is the speed limit and ρ_{j} is the jamming density. For the initial conditions:

$$
\rho(x, 0)= \begin{cases}\rho_{0} & \text { for } x<0, \tag{2.1}\\ \rho_{0}(L-x) / L & \text { for } 0<x<L, \\ 0 & \text { for } L<x,\end{cases}
$$

where $0<\rho_{0}<\rho_{j}$ and $0<L$, determine and sketch $\rho(x, t)$.

3 Haberman 7701. Shock velocity when $u=u(\rho)$ is linear

Statement: Shock velocity when $u=u(\rho)$ is linear
If $u=u_{\max }\left(1-\rho / \rho_{\max }\right)$, what is the velocity of a traffic shock separating the densities ρ_{0} and ρ_{1} ? Simplify the expression as much as possible. Show that the shock velocity is the average of the density wave velocities associated with ρ_{0} and ρ_{1}.

4 Haberman 7902. Shock velocity

Statement: Shock velocity

Suppose that
Determine the velocity of the shock. Briefly give a physical

$$
\rho(x, 0)= \begin{cases}\rho_{0} & \text { for } x>0 \tag{4.1}\\ 0 & \text { for } x<0\end{cases}
$$

explanation of the result. What does this shock correspond to?

$5 \mathrm{KiNe03}$. Initial value problem with Q quadratic

Statement: Initial value problem with Q quadratic

Consider the traffic flow equation

$$
\begin{equation*}
\rho_{t}+q_{x}=0 \tag{5.1}
\end{equation*}
$$

for a flow $q=Q(\rho)$ that is a quadratic function of ρ. In this case $c=\mathrm{d} Q / \mathrm{d} \rho$ is a conserved quantity as well (why?). Thus the problem (including shocks, if any) can be entirely formulated in terms of c, which satisfies

$$
\begin{equation*}
c_{t}+\left(\frac{1}{2} c^{2}\right)_{x}=0 \tag{5.2}
\end{equation*}
$$

1. Consider the initial value problem determined by (5.2) and ${ }^{1}$

$$
\begin{equation*}
c(x, 0)=0 \text { for } x \leq 0 \quad \text { and } \quad c(x, 0)=2 \sqrt{x} \geq 0 \text { for } x \geq 0 \tag{5.3}
\end{equation*}
$$

Without actually solving the problem, argue that the solution to this problem must have the form

$$
\begin{equation*}
c=t f\left(x / t^{2}\right) \text { for } t>0, \quad \text { for some function } f \tag{5.4}
\end{equation*}
$$

Hint. Let $c=c(x, t)$ be the solution. For any constant $a>0$, define $\mathcal{C}=\mathcal{C}(x, t)$ by $\mathcal{C}=\frac{\mathbf{1}}{\boldsymbol{a}} \boldsymbol{c}\left(\boldsymbol{a}^{\mathbf{2}} \boldsymbol{x}\right.$, $\left.\boldsymbol{a} \boldsymbol{t}\right)$. What problem does \mathcal{C} satisfy? Use now the fact that the solution to (5.2-5.3) is unique to show that (5.4) must apply, by selecting the constant \boldsymbol{a} appropriately at any fixed time $t>0$.
2. Use the method of characteristics to solve the problem in (5.2-5.3). Write the solution explicitly for all $\boldsymbol{t}>\boldsymbol{0}$, and verify that it satisfies (5.4). Warning: the solution involves a square root. Be careful to select the correct sign, and to justify your choice.
3. For the solution obtained in item 2, evaluate $\boldsymbol{c}_{\boldsymbol{x}}$ at $\boldsymbol{x}=\mathbf{0}$ for $\boldsymbol{t}>\mathbf{0}$. Note that this derivative is discontinuous there, so it has two values (left and right).

[^0]
6 Linear 1st order PDE (problem 09)

Statement: Linear 1st order PDE (problem 09)

Surface Evolution. The evolution of a material surface can (sometimes) be modeled by a pde. In evaporation dynamics, where the material evaporates into the surrounding environment, consider a surface described in terms of its "height" $h=h(x, y, t)$ relative to the (x, y)-plane of reference. Under appropriate conditions, a rather complicated pde can be written ${ }^{2}$ for h. Here we consider a (drastically) simplified version of the problem, where the governing equation is

$$
\begin{equation*}
h_{t}=\frac{A}{r} h_{r}, \quad \text { for } r=\sqrt{x^{2}+y^{2}}>0 \text { and } t>0, \quad \text { where } A>0 \text { is a constant. } \tag{6.1}
\end{equation*}
$$

Axial symmetry is assumed, so that $h=h(r, t)$. Obviously, \boldsymbol{h} should be an even function of \boldsymbol{r}. This is both evident from the symmetry, and necessary in the equation to avoid singular behavior at the origin. Assume now

$$
\begin{equation*}
h(r, 0)=H\left(r^{2}\right) \tag{6.2}
\end{equation*}
$$

where H is a smooth function describing a localized bump. Specifically: (i) $H(0)>0$, (ii) H is monotone decreasing. (iii) $H \rightarrow 0$ as $r \rightarrow \infty$. Note that $\boldsymbol{h}(\boldsymbol{r}, \mathbf{0})$ is an even function of r.

1. Using the theory of characteristics, write an explicit formula for the solution of $(6.1-6.2)$.
2. Do a sketch of the characteristics in space time - i.e.: $r>0$ and $t>0$.
3. What happens with the characteristic starting at $r=\zeta>0$ and $t=0$ when $t=\zeta^{2} / 2 A$?
4. Show that the resulting solution is an even function of r for all times.
5. Show that, as $t \rightarrow \infty$, the bump shrinks and vanishes. Hint. Pick some example function H with the properties above, and plot the solution for various times. This will help you figure out why the bump shrinks and vanishes.

THE END.

[^1]
[^0]: ${ }^{1}$ In a traffic problem, c must satisfy $c\left(\rho_{j}\right) \leq c \leq c(0)$. Ignore the fact that this does not apply for (5.2).

[^1]: ${ }^{2}$ From mass conservation, with the details of the physics going into modeling the flux and sink/source terms.

