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1 Compute a channel flow rate function #01

Statement: Compute a channel flow rate function #01

It was shown in the lectures that for a river (or a man-made channel) in the plains, under conditions that are not

changing too rapidly (quasi-equilibrium), the following equation should apply

At + qx = 0, (1.1)

where A = A(x, t) is the cross-sectional filled area of the river bed, x measures length along the river, and q = Q(A)

is a function giving the flow rate at any point.

That the flow rate q should be a function of A only 1 follows from the assumption of quasi-equilibrium. Then q is

determined by a local balance between the friction forces and the force of gravity down the river bed.

1 Possibly also x. That is: q = Q(x, A), to account for non-uniformities along the river.
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Assume now a man-made channel, with uniform triangular cross-section† and a uniform (small) downward slope,

characterized by an angle θ. Assume also that the frictional forces are proportional to the product of the flow velocity

u down the channel, and the wetted perimeter Pw of the channel bed Ff = Cf uPw. Derive the form that the flow

function Q should have. † Isosceles triangle, with bottom angle φ.

Hints: (1) Q = uA, where u is determined by the balance of the frictional forces and gravity. (2) The wetted perimeter

Pw is proportional to some power of A.

2 Conservation of probability in QM

Conservation of probability in QM

In non-relativistic quantum mechanics the motion of a point particle in a potential V is described by Schrödinger’s

equation.
i }ψt = − }2

2m
ψxx + V (x)ψ in 1D, (2.1)

where } = h
2π is the Plank constant divided by 2π,

ψ = ψ(x, t) is the (complex valued) wave function,

m the particle’s mass, and i is the imaginary unit.

The interpretation is that 2 ρ̃ = |ψ|2 = ψ ψ∗ (2.2)

is the pdf [probability distribution function] (pdf)

for the particle position. That is, the probability

of finding the particle in any interval a < x < b is 3

∫ b

a

ρ̃ dx. (2.3)

Now: probability is conserved, and ρ̃ is its density. Question: What is the probability flux?

Hint. Use (2.1) to find an equation of the form ρ̃t + q̃x = 0. The flux is then q̃.

Warning: check that the flux you obtain is real valued.

3 Dispersive Waves and Modulation

Statement: Dispersive Waves and Modulation

Consider the following linear partial differential equations for the scalar function u = u(x, t):

ut + c ux + duxxx = 0, (3.1)

utt − uxx + au = 0, (3.2)

i ut + b u+ g uxx = 0, (3.3)

where the equations are written in a-dimensional variables, (c, d, a, b, g) are real constants, and a > 0. These

equations arise in many applications, but we will not be concerned with them here. It should be clear that, in all three

cases,
u = Aei (k x−ω t+θ0), where ω = Ω(k), (3.4)

is a solution of the equations, for any real constants A > 0, θ0, k, and ω, provided that
2 Here ∗ indicates the complex conjugate.
3 ψ should be normalized so that

∫
ρ̃ dx = 1, where the integral is over the whole domain where the particle resides.

The units for ψ are 1/
√
length in 1D.
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M1. For equation (3.1): Ω(k) = c k − d k3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Verify that this is true.

M2. For equation (3.2): Ω(k) = ±
√
a+ k2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Verify that this is true.

M3. For equation (3.3): Ω(k) = −b+ g k2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Verify that this is true.

Note that the general solution to the equations can be written as a linear combination of solutions of this type, via Fourier

Series and Fourier Transforms — we will see this later in the semester.

Remark 3.1 Solutions such as that in (3.4) represent monochromatic sinusoidal traveling waves, with amplitude

A, phase θ = k x− ω t+ θ0, wave number k, and angular frequency ω. The wave length and wave period

are λ = 2π/k and τ = 2π/ω, respectively. The wave profile’s crests and troughs move at the speed given by θ =

constant, namely: the phase speed cp = ω/k. ♣

Remark 3.2 In all three cases, Ω = Ω(k) is a real valued function of k, with d2Ω
dk2 6= 0 — i.e.: Ω is not a linear

function of k. Because of this, we say that the equations are dispersive and call Ω the dispersion function. The

(non-constant) velocity cg = cg(k) = dω/dk is called the group speed, and the objective of this problem is to find

out what the meaning of cg is.

The reason for the name “dispersive” is as follows: In a dispersive system, waves with different wavelengths propagate

at different speeds. Thus, a localized initial disturbance, made up of many modes of different wavelengths, will disperse

in time, as the waves cease to add up in the proper phases to guarantee a localized solution. This is because localization

depends on destructive interference, outside some small region, of all the modes a(k) ei (k x+θ0) making up the initial

disturbance. However, since these modes propagate at different speeds, the phase coherence needed for destructive

interference is destroyed by the time evolution. This phenomena is illustrated in figure 3.1. ♣
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Figure 3.1: Example of dispersion: initial “Gaussian” bump, as it evolves under a dispersive equation with Ω(k) = ±k2

— i.e.: utt + uxxxx = 0. The solution at times t = 0, 1/4, 1/2 displayed. As the initial lump’s phase coherence

is destroyed by dispersion, localization is lost, and the bump “disperses”. The solution u = u(x, t) is given by the

Fourier integral u = Re
(∫∞
−∞ a(k)ei(k x−k

2 t)dk
)

, where a(k) = e−k
2/9.

The tasks to be performed

TASK 1. verify M1 through M3, above below equation (3.4).
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TASK 2: Consider a dispersive waves system, that is: a system of equations accepting monochromatic traveling

waves as solutions, provided that their wave number k and angular frequency ω are related by a dispersion relation

ω = Ω(k). (3.5)

Consider now a slowly varying, nearly monochromatic solution of the system. To be more precise: consider a solution

such that at each point in space–time one can associate a local wave number k = k(x, t) and a local angular frequency

ω = ω(x, t). In particular, assume that both k and ω vary slowly in space and time, so that they change very little

over a few wavelengths or a few wave periods — on the other hand, they may change considerably over many wave

lengths or wave periods. Then

Assuming conservation of wave crests, derive equations governing k and ω.

These equations are called the Wave Modulation Equations.

Remark 3.3 The assumption that k and ω vary slowly is fundamental in making sense of the notion of a locally

monochromatic wave. To even define a wave number or an angular frequency, the wave must look approximately

monochromatic over several wavelengths and periods. ♣

Remark 3.4 Why is it reasonable to assume that the wave crests are conserved? The idea behind this is that,

for a wave crest to disappear (or for a new wave crest to appear), something pretty drastic has to happen in the wave

field. This is not compatible with the assumption of slow variation. It does not mean that it cannot happen, just that

it will happen in circumstances where the assumption of slow variation is invalid. There are some pretty interesting

research problems in pattern formation that are related to this point. ♣

Hint 3.1 It should be clear that one of the equations is ω = Ω(k), since the solution behaves locally like a monochro-

matic wave (this is the “quasi-equilibrium” approximation in this context). For the second equation, express the density

of wave crests (and its flux) in terms of k and ω. To figure this out, think of the following questions (i) How many

wave crests are there per unit length for a sinusoidal wave? (ii) How many wave crests pass through a fixed point in

space, per unit time, for a sinusoidal wave? Then write the equation for the conservation of wave crests using these

quantities. ♣

4 Fundamental Diagram of Traffic Flow #01

Statement: Fundamental Diagram of Traffic Flow #01

The desired car velocity u = U(ρ) has its maximum, um, at ρ = 0, and vanishes at the jamming density, ρJ . Assuming

that U is a linear function of ρ, write a formula for the flow rate q = Q(ρ). What is the road capacity qm? What is

the wave velocity c = c(ρ)?

5 Fundamental Diagram of Traffic Flow #03

Statement: Fundamental Diagram of Traffic Flow #03

Many state laws state that: for each 10 mph (16 kph) of speed you should stay at least one car length behind the car

in front. Assuming that people obey this law “literally” (i.e. they use exactly one car length), determine the density

of cars as a function of speed (assume that the average length of a car is 16 ft (5 m)). There is another law that
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gives a maximum speed limit (assume that this is 50 mph (80 kph)). Find the flow of cars as a function of density,

q = q(ρ), that results from these two laws.

The state laws on following distances stated in the prior paragraph were developed in order to prescribe a spacing

between cars such that rear-end collisions could be avoided, as follows:

a. Assume that a car stops instantaneously. How far would the car following it travel if moving at u mph and

a1. The driver’s reaction time is τ , and

a2. After a delay τ , the car slows down at a constant maximum deceleration α.

b. The calculation in part a may seem somewhat conservative, since cars rarely stop instantaneously. Instead,

assume that the first car also decelerates at the same maximum rate α, but the driver in the following car still

takes a time τ to react. How far back does a car have to be, traveling at u mph, in order to prevent a rear-end

collision?

c. Show that the law described in the first paragraph of this problem corresponds to part b, if the human reaction

time is about 1 sec. and the length of a car is about 16 ft (5 m).

Note: What part c is asking you to do is to justify/derive the state law prescription, using the calculations in part

b to arrive at the minimum car-to-car separation needed to avoid a collision when the cars are forced to brake.

Practice problems
The problems below are practice problems. These are things important for what follows in the course, and

which you likely know, but may need a bit of practice on.

6 ExID03. Single variable implicit differentiation

Statement: Single variable implicit differentiation

In each case compute y′ =
dy

dp
as a function of y and p, given that y = y(p) satisfies:

1. p3 + p y + 2 = 0. 2. y = sin(y + p). 3. ln(y) = p.

4. cos2(y) = p, for p > 0. 5. y = f(c− y p). 6. y = f(p− c y).

Note: in (5) and (6) f is an arbitrary function, and c is a constant.

7 ExID14. Two variable implicit differentiation

Statement: Two variable implicit differentiation

In each case compute ux =
∂u

∂x
and up =

∂u

∂p
(as functions of u, x, and p), given that u = u(x, p) satisfies:

1. cos(p2 u) = p e−x
2

. 2. p = cos(x+ u). 3. u = p f(x+ u).

Note: In (3) f is an arbitrary function of a single variable, f = f(ζ).
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8 ExID42. Differentiation within integrals

Statement: Differentiation within integrals

In each case compute ux =
∂u

∂x
and up =

∂u

∂p
(as functions of u, x, and p), given that u = u(x, p) satisfies:

1. p =

∫ u

0

exp
(
p sin(s) + x s2

)
ds.

2. u =

∫ x

0

sin
(
p u(s2, s) + x s

)
ds.

3. p =

∫ u

x

cos
(
p sin(s) + x s2

)
ds.

9 ExID56. Directional derivatives and Taylor

Statement: Directional derivatives and Taylor

Do the tasks stated in items 1 and 2 below

1. Let Γ be a curve in the plane, ~r = (x, y), parameterized by arc-length: x = X(s) and y = Y (s). Assume

that dY
ds

< 0 along the curve, and that the curve is tangent to the unit circle for s = 0, at the point

(x, y) = (1/
√

2, 1/
√

2).

Calculate dΦ
ds

at s = 0, along the curve Γ, for Φ = sin

(
π
√

2
x+ π y2

)
.

Correct answer required. “I only missed a sign”, or similar, excuses not allowed. Check your answer!

2. Let Γ be the straight line in the plane, ~r = (x, y), given by x = 1 + t and y = t, −∞ < t <∞. Let Φ = Φ(~r)

be some smooth scalar function. Define f = f(t) by f = Φ along Γ.

Write the first three terms of the Taylor expansion for f at t = 0, in terms of the partial derivatives of Φ at

~r0 = (1, 0). In particular, compute ḟ(0) and f̈(0) for Φ = x2 ey.

10 ExID61. Direct Taylor expansions

Statement: Direct Taylor expansions

For the examples below, calculate the Taylor expansion up to the order indicated (e.g.: cos(x) = 1− 1
2 x

2 +O(x4)).

Do not use a calculator to evaluate constants that appear in the expansions — e.g.,
√

2/π or cos(3). On the other

hand, do simplify when possible — e.g., tan(π/4) = 1 or 2/
√

2 =
√

2.

1. Expand, up to O(x4), f(x) = sin(x) cos(
√
x).

2. Expand, up to O(x5), f(x) = sin(1 + x).

3. Expand, up to O(x5), f(x) = sin(1 + x+ x3).

4. Let G = G(x, y) be some smooth4 function of two variables. For z ≥ 0, expand up to O(z3), f(z) = G(z, z1.5).

Express the expansion coefficients in terms of partial derivatives of G.

4The partial derivatives of f , to any order, exist and are continuous
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11 ExID71. Change of variables for an ode

Statement: Change of variables for an ode

Consider the second order, nonlinear, ode

x2 cosw
d2w

dx2
− x2 sinw

(
dw

dx

)2

+ x cosw
dw

dx
+ sinw = 0 (11.1)

for w = w(x), where x > 0. Rewrite it in terms of u = u(y), where u = sinw and y = lnx.

12 ExID77. Change of variables for a pde

Statement: Change of variables for a pde

Let u = u(x, t) be a solution of the heat ut = uxx. (12.1)

What equation does φ = − 1
u ux satisfy?

Hint. Calculate φt and use the equation for u. Calculate φx and write it in terms of u, uxx, and φ2. Then compute

φxx. You should now be able to write φt in terms of φ, φx, and φxx.

THE END.


