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1 Introduction. Experimenting with Numerical Schemes

Consider the numerical schemes that follow after this introduction, for the specified equations. YOUR TASK here
is to experiment (numerically) with them so as to answer the question: Are they sensible? Specifically:

i.1 Which schemes give rise to the type of behavior illustrated by the “bad” scheme in the GBNS_lecture script? !
of the 18.311 MatLab Toolkit?

i.2 Which ones behave properly as Az and At vanish?

Further: show that they all arise from some approximation of the derivatives in the equations, similar to the
approximations used to derive the “good” and “bad” schemes used in the GBNS _lecture script ? of the 18.311 MatLab
Toolkit. That is: show that the schemes are consistent.*
1 I strongly recommend that you read the Stability of Numerical Schemes for PDE’s notes in
the course WEB page before you do these problems.

Remark 1.1 Some of the schemes are “good” and some are not. For the “good” schemes restrictions are needed
(as Az gets small) on At to avoid bad behavior — i.e.: fast growth of grid-scale oscillations. Specifically: in all the
schemes a parameter appears: A = At/Ax in some cases, and v = At/(Ax)? in others. You will need to keep
this parameter smaller than some constant to get the “good” schemes to behave. That is: A < A, or v < v.. For
the “bad” schemes, it will not matter how small X\ (or v) is. Figuring out the values of these constants is also
part of the problem. For the assigned schemes the constants, when they exist (“good” schemes), are simple O(1)
numbers, somewhere between 1/4 and 2. That is, stuff like 1/2, 2/3, 1, 3/2, etc. — not things like Ao = w/4 or
v. = /e. You should be able to find them by careful numerical experimentation. [

1 Alternatively: check the Stability of Numerical Schemes for PDE’s notes in the course WEB page.
2 Alternatively: check the Stability of Numerical Schemes for PDE’s notes in the course WEB page.
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Remark 1.2 In order to do these problems you may need to write your own programs. If you choose to use MatLab
for this purpose, there are several scripts in the 18.8311 MatLab Toolkit that can easily be adapted for this. The
relevant scripts are:

e The schemes used by the GBNS _lecture MatLab script are implemented in the script InitGBNS.

e The two script series
PS311_Scheme_A, PS311 _Scheme_ B, ... and PS311_SchemeDIC_A, PS311_SchemeDICB, ...,
have several examples of schemes already setup in an easy to use format. Most of the algorithms here are
already implemented in these scripts. The scripts are written so that modifying them to use with a different
scheme involves editing only a few (clearly indicated) lines of the code.

e Note that the scripts in the 18.311 MatLab Toolkit are written avoiding the use of “for” loops and making use
of the vector forms MatLab allows — things run a lot faster this way. Do your programs this way too, it is
good practice. &

Remark 1.3 Do not include lots of graphs and numerical output in your answers. Explain what you did and how
you arrived at your conclusions, and illustrate your points with a few selected graphs. &

Remark 1.4 In all cases the notation: T, = To + nAx, tr = to + kAL, and u’; = u(Tn,t),

is used. &

2 GBNSO02. scheme B. Backward differences for u; + u, = 0

2.1 Statement: Scheme B. Backward differences for u; + u, = 0

At
Equation: us + ug, = 0. Scheme: ufﬁ'l = ufl - (ufL — u’fl_l)7 where A = Ag’
T

Reminder/read the introduction! Here you are asked to (numerically) study this scheme and decide if it is unstable or not.
Specifically, for this scheme:

Is there some positive value of A\, A¢c > 0, such that, for 0 < A < A, the solution of the scheme converges to the solution to the
PDE as Az — 07 In this case the scheme is stable.

Else, for any A > 0, as Ax — 0, the solutions develop very large amplitude grid scale oscillations. Then the scheme is unstable.
If there is a Ac, find it (approximately) by experimenting (numerically) with the scheme.

WARNING: even a stable scheme blows up if A > A.. Observing blow up for one A is not enough to conclude instability. This
does not mean you have to check arbitrarily small A's — typically Ac = O(1). Note also that, to observe the blow up you need to

run many time steps. As Ax — 0, keep the time interval over which you solve the equation fixed, say: fromt =0tot = 1.

2.2 Answer: Scheme B. Backward differences for u; + u, = 0

This is the scheme implemented by the PS311_Scheme_B and the PS311_SchemeDIC_B scripts in the 18311 MatLab
Toolkit. You should have found that this scheme is stable: for A\ < A. = 1 the numerical scheme does not amplify
the noise. This scheme is also consistent. Consistency follows because the scheme equations can be written in the

form k k k k
+1 _
Up, — Up + Up, Up—1

At Az
which are satisfied with errors of O(At, Azx) by any smooth solution of the equation u; + u, = 0.

=0,
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Note that, as a consequence of stability and consistency, the scheme is convergent: as Az — 0 the numerical
solution converges to the exact solution, provided that X < ..

3 GBNSO03 scheme C. Centered differences for u; + u, = 0

3.1 Statement: Scheme C. Centered differences for u; + u, = 0

Equation: u; + u, = 0. Scheme: ui"'l = uﬁ — %)\ (uﬁ_H — uﬁ_l), where A = %
Reminder/read the introduction! Here you are asked to (numerically) study this scheme and decide if it is unstable or not.
Specifically, for this scheme:

Is there some positive value of A\, A > 0, such that, for 0 < A < A, the solution of the scheme converges to the solution to the
PDE as Ax — 07 In this case the scheme is stable.

Else, for any A > 0, as Az — 0, the solutions develop very large amplitude grid scale oscillations. Then the scheme is unstable.
If there is a A, find it (approximately) by experimenting (numerically) with the scheme.

WARNING: even a stable scheme blows up if A > A.. Observing blow up for one A is not enough to conclude instability. This
does not mean you have to check arbitrarily small A's — typically Ac = O(1). Note also that, to observe the blow up you need to

run many time steps. As Az — 0, keep the time interval over which you solve the equation fixed, say: from ¢ = 0 to t = 1.

3.2 Answer: Scheme C. Centered differences for u; + u, = 0

This is the scheme implemented by the PS311_Scheme_C and the PS311_SchemeDIC_C scripts in the 18311 MatLab
Toolkit. You should have found that this scheme is unstable: there is no value A. > 0 such that (for A < A.)
the numerical solution does not develop exponentially large, grid scale, oscillations as Az — 0.

On the other hand, the scheme is consistent. It’s equations can be written in the form

k+1 k k _ .k
Uy, — Uy, un-i—l Up_1

At 2Ax

207

which are satisfied with errors of O(At, (Ax)?) by any smooth solution of the equation u; + u, = 0.

4 Experiments with a slinky

4.1 Statement: Experiments with a slinky

Consider a homogeneous cylindrical rod (made of an elastic material), subject to (small amplitude) longitudinal
deformations. Let x be the length coordinate (measured along the axis of the cylinder) when the cylinder is in its
relaxed position. Use z as a label for the mass elements in the cylinder.® For every mass element x, let u = u(zx, t)
be its position at time ¢, measured along the axis of the cylinder (note that u = @ corresponds to the cylinder at rest.)
Then u describes the state of the cylinder at any time and obeys the wave equation:

Uy — 2 Upy =0, where ¢ = /k/p. (4.1)

3 Since we are considering only longitudinal motions, points in a cross section move in unison and we need not label them separately.
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Here p is the density (mass per unit length) of the rod, and k characterizes the elastic response of the material: if we

AL
stretch the cylinder by an amount AL, then the elastic force is kT, where L is the length of the rod (note that k

has the dimensions of a force, thus ¢ is a speed).

Remark 4.1 The basic assumption here is that the cylinder remains at all times within the regime of applicability
of Hooke’s law. This means that the deformations (given by u, — 1) are small enough everywhere. In particular, this
also implies that variations in the cross-section of of the cylinder can be ignored (e.g.: if volume is preserved, the
cross section will be larger in regions under compression than in those under tension).

In the derivation of equation (4.1) it is assumed that the elastic forces are dominant, so that other forces (e.g.:
gravity) can be ignored. For a rod with a vertical orientation, such that the elastic forces are not dominant over
gravity, equation (4.1) must be modified to:

Upy = ¢ Uy = -9, (4.2)

where g is the acceleration of gravity, and we assume that the vertical coordinate x increases upwards. In particular,
consider the case of a rod hanging vertically without any motion (i.e.: © = u(z), with no time dependence), and
measure x from the bottom of the rod. Then:

u=0 and wuy,=1at =0, (4.3)

where the second equation follows because there is no force at the lower end (no section of the rod below that must
be supported). Then the equation for u = u(x), namely:

gy =g,
can be integrated to yield:
g 2
u=—Fz°+x. 44
2c2 (44)

A particular example where this should apply to is that of a slinky. One objective of this problem is for you to
check how well a slinky obeys equation (4.4).

Proceed as follows:

1. Get a slinky in good condition and draw a straight line along its edge, parallel to the slinky’s axis. Draw the
line so that, when it reaches one end (the “bottom” end), it does so at the end of the coil that makes the
slinky — i.e.: no more coil beyond the mark.

2. Starting from the “bottom” end of the slinky, name the points at which each coil is marked by the line as
n =0,1,... Then (if w is the width of a coil) when the slinky is at rest, the position of the nt® point is given by

T, =Nnw.

3. To find w, measure the total length of the slinky, and divide this by the number of coils. You can also easily
measure the “density” p of the coil by weighting it and dividing the result by its length.

4. Hang the slinky in a vertical position* (with the bottom end down) and wait till it is at rest. Then measure
the distance u,, of the nt" point from the point n = 0 at the bottom. One way to do this is to have a measuring
tape on a wall right behind the hanging slinky.

5. Equation (4.4) predicts that
g

T 22

4 For example, staple it to the underside of a shelf by a wall.

2+ x, = % 2+ 1z, (4.5)

Unp
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6. The question is now: How well does equation (4.5) match your measurements? Of course, you do not have k,
but you will have several values of n. If (4.5) applies, then

gp gp
Upy1 — Up = Auy = ?uﬂn—i—ﬁwQ—l—w.
Thus a plot of Un11 — un versus n should give a straight line with slope g pw?/k. From this you can get k,

which is the hardest quantity to measure directly in this context.

Next suspend the slinky from one end and set it to vibrate (longitudinally). In this case, if we set the origin for the
coordinate = at the top (where the slinky does not move), the governing equation will still be (4.2), but the boundary

conditions are now:
w(0,t) =0 and wu,(—L,¢t) =1, (4.6)

where L is the length of the slinky in its rest state. The first condition here follows because x = 0 corresponds to
the clamped end at the top, while the second simply states that there are no elastic forces at the bottom end (same
reason used when deriving the second condition in (4.3)). It is easy to see that these conditions (and the equation)
are satisfied by the function

L
u = asin (%x) sin (%t)—F%IZ—F <1—|—902> z, (4.7

4L
where a is an arbitrary constant. This solution corresponds to an oscillation with period T' = —.
c
Now, continue the experiment:

7. In the situation described in the paragraph above, measure the period of the slinky — do not try to measure
a single period, time several and then divide by the number of periods timed.

8. Compare the result of your measurement of the period with the one given by the formula for T' above — from
the prior steps you can obtain a value for c.

9. Discuss the results of your experiment.

4.2 Answer: Experiments with a slinky

These is the data obtained with one slinky, doing the measurements in rather primitive (home) conditions. The
slinky basic characteristics were:

e Number of coils in the slinky ....... ... . N =40.

e Length of slinky when contracted .............. ... ... ... i L =6.59 cm.

e Width of each slinky coil (w=L/N) ... w =1.65 mm.

e Total mass of slinky ... M =86.4 gr.

e Density p= M/L of slinky ... p=13.1 gr/cm.

Note 1: You should not trust the third number in these quantities too much. The error in L is in the order of 0.5 mm at
best, for example (a carpenter tape, with the smallest division a 1/16 of an inch, was used to do length measurements).
As we will see below, we will not need any of these quantities (except for the number of coils IN) to check the validity of
our “slinky theory”.

Note 2: An important point is that, when suspending the slinky the last two coils were used. Thus, we take N = 39
and L = 6.42 cm in the calculations below.

The distances between successive coils of the slinky, when hanging vertically without moving, numbered from bottom
to top, are given below in equation (4.8). Again the measurements were made using a carpenter tape and then
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transformed into centimeters. Because it is rather hard to make these measurements with the slinky hanging, we
should expect much less precision here than when measuring L above — in the order of millimeters: the second decimal
digit below is probably not very meaningful, even the first is suspect.
di dy d3 dy ds d¢ d7 ds dy dig din  di2  dis
0.16 024 040 048 064 095 095 095 1.19 143 159 1.75 1.98

dig  di5  dig dir dis  dig  dao  dor doa dog daa das dye (4.8)
222 238 254 254 286 3.02 333 349 349 349 3.65 413 3.65 '

doy  dog  dyg d3o  d31 d3z  d3z  dza  d3s  d3s  dzr  dss
3.81 3.81 397 4.13 429 445 445 4.60 4.76 5.08 540 6.35

A plot of these distances versus n is shown in figure 4.1. The theory predicts that the points (d,, n) should be on

cm
8_ ““““““““ “““““““ ......... “““““““““ ......... ........ ““““““““ .......
| . Separationd between coils.
T .
6. ““““““““ “““““““ ““““““““““““““““““““““““““““““““““““““““““
Slope =0.14cm : _ _
| R P N T R T 4

Figure 4.1: Experiments with a slinky. Slinky coil separation d,, as a function of n, when the slinky is hanging vertically
without moving (the index m is ordered from the bottom up). The theory predicts that this should be a straight line
with slope a = gpw?k™1.

a line with slope a = g pw? k™', where k characterizes the elastic response of the slinky and g = 9.81 cm/sec is
the acceleration of gravity. From the data above we can get a least squares approximation to this slope, namely
a = 0.14 cm. The theory also predicts a value for the period of oscillation of the slinky (when hanging vertically),

4L o a L Ja a
TtheoryC4L\/;4L1/gw24w\/;41\7\/;~1.895ec.

To calculate this period only the slope a = 0.14 cm and the number of coils N = 39 are needed. None of the other
parameters listed at the start of this problem answer is needed.

given by:

A direct measurement of the period went as follows:

e 1-st measurement: 4 osc?llat?ons %n 6.5 sec. which vields Texper = 1.65 sec.
e 2-nd measurement: 4 oscillations in 6.7 sec.

The two numbers agree to within 14 %, which is not great but not too bad either.
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Discussion.

The agreement between the data in equation (4.8) and a straight line, as shown by figure 4.1, is quite reasonable (but
not perfect). Actually, a calculation of the standard deviation of the measured d,, (from the ones given by the least
squares straight line fit) yields o = 2.53 mm — quite in line with what one should expect, given the crude conditions
in which the experiment was conducted. Given that the average coil separation was Mean(d,,) = 2.86 cm, the given
o represents an error in measuring the values d,, of size 10 %. Thus, we expect the value of a calculated from this
to be not much better than this. Given that measuring the period is also quite hard (figuring out when a period
ends/starts is not easy), the discrepancy between the measured period and the calculated period is quite in line with
what should be expected.

Further observations:

e The value for dsg has a large error (furthest away from the straight line). Clearly this is one of the hardest to
measure, since one of the two coils it involves is the last (tied) one.

e At some places the d,, line up, for three successive n’s or so, horizontally. This is caused by round off to the
nearest mark in the measuring tape, when the differences in length are small.

e [ expected the largest errors in d,, to occur near the bottom, where the distances are small. But this turned
out not to be true (at least for this experiment).

e A slinky is not really a “rod”, so using the rod equations to describe its behavior involves a fairly rough
approximation. It is not clear how much of the discrepancies in this experiment are due to sloppy experimental
technique and how much is due to model imperfections. On the other hand, this simple example shows that
even rough approximations can be quite good.

e The largest discrepancy appears to be between Tipeory and Texper- Here we would like to point out that
the theoretical value arises, in particular, from assuming that the slinky is “perfectly” immovable at the top.
However, it turns out that the period can be quite sensitive to what happens there. For example, suppose that
there is some “elastic yield” at the point where the coil is suspended. This means that the condition w(0, t) =0
in (4.6) has to be replaced by a condition balancing the slinky tensional force (given by k(u, — 1)) and the
restoring force trying to keep w vanishing there. Namely, we would end up with something like

kE(uz —1)=au for z=0,

where « is the elastic constant for the slinky support. In this case we must replace (4.7) by
ac?’

u:acos(ﬁ(z+L))cos(th)+%:172+ (1+g2L> x+ gkL
c c

where a is an arbitrary constant and S must satisfy a cos(3L) + k3 sin(3 L) = 0. The period is now

2
T = —g Ouly for a = 0o does the prior result follow! For « large (but finite), a first correction to the o = 0o
c

T k 4L k
Y (”aL) = T (“m)-

This is the sort of thing you would have to face if you merely use a piece of tape (or glue) to keep the slinky

result yields:

fixed at the top. In this case it would be very hard to estimate the size of «, but it is unlikely that the correction
would be negligible. Other sloppy ways of suspending the slinky would have similar problems.

THE END.



