Answers to P-Set # 04, 18.300 MIT (Spring 2022)

Rodolfo R. Rosales (MIT, Math. Dept., room 2-337, Cambridge, MA 02139)

March 9, 2022

Contents

1		· · · · · · · · · · · · · · · · · · ·	1
	1.1	F	
	1.2	Answer: Solve initial value problem	2
2	Hab	perman 7402. Solve initial value problem	2
	2.1	Statement: Solve initial value problem	2
	2.2	Answer: Solve initial value problem	3
3	Hal	perman 7701. Shock velocity when $u=u(\rho)$ is linear	3
		Shock velocity is average of characteristic velocities for $u=u(\rho)$ linear	3
	3.1		
	3.2	Answer: Shock velocity when $u = u(\rho)$ is linear	4
4	Hal	perman 7902. Shock velocity	4
	4.1	Statement: Shock velocity	4
	4.2	Answer: Shock velocity	
5	KiN	Ne03. Initial value problem with Q quadratic	4
		Similarity solution (case with no shock)	4
	5.1	Statement: Initial value problem with $oldsymbol{Q}$ quadratic	4
	5.2	Answer: Initial value problem with $m{Q}$ quadratic	5
6	Line	ear 1st order PDE (problem 09)	6
		Surface evolution. Solve $h_t = (A/r)h_r$	6
	6.1	Statement: Linear 1st order PDE (problem 09)	6
	6.2	Answer: Linear 1st order PDE (problem 09)	6
\mathbf{L}	ist	of Figures	
	1.1	Haberman 7401. Initial value problem with c linear in ρ	2
	2.1	Haberman 7402. Initial value problem with c quadratic in ρ	
	6.1	Surface evolution and characteristics	

1 Haberman 7401. Solve initial value problem

1.1 Statement: Solve initial value problem

Assume that $u(\rho) = u_m (1 - \rho/\rho_j)$, where u_m is the speed limit and ρ_j is the jamming density. For the initial conditions:

$$\rho(x, 0) = \begin{cases}
\rho_0 & \text{for } x < 0, \\
\rho_0 (L - x)/L & \text{for } 0 \le x \le L, \\
0 & \text{for } L < x,
\end{cases}$$
(1.1)

where $0 < \rho_0 < \rho_j$ and 0 < L, determine and sketch $\rho(x, t)$.

1.2 Answer: Solve initial value problem

Note that $c = c(\rho) = \frac{d(\rho u)}{d\rho} = u_m \left(1 - \frac{2\rho}{\rho_j}\right)$ is a **decreasing** function of ρ . We now solve using characteristics, as follows:

Region (2) (0
$$\leq x \leq L$$
 at $t = 0$). Here $\rho = \frac{\rho_0 (L - \zeta)}{L}$ along $x = c \left(\frac{\rho_0 (L - \zeta)}{L}\right) t + \zeta$, where $0 \leq \zeta \leq L$.

Eliminating ζ , it follows that $\rho = \frac{u_m t + L - x}{(u_m - c_0) t + L} \rho_0$ for $c_0 t \le x \le u_m t + L$.

Region (3) (L < x at t = 0). Here $\rho = 0$ along $x = u_m t + \zeta$,

Summarizing, we have (see figure 1.1)

$$\rho(x, t) = \begin{cases} \rho_0 & \text{for } x < c_0 t. \\ \frac{u_m t + L - x}{(u_m - c_0) t + L} \rho_0 & \text{for } c_0 t \le x \le u_m t + L. \\ 0 & \text{for } u_m t + L < x. \end{cases}$$
(1.2)

Figure 1.1: Haberman 7401. Solution to the initial value problem posed in equation (1.1), for the case $c(\rho_0) < 0$, plotted for some arbitrary t > 0. The case $c(\rho_0) > 0$ is similar.

2 Haberman 7402. Solve initial value problem

2.1 Statement: Solve initial value problem

Assume that $u(\rho) = u_m (1 - \rho^2/\rho_j^2)$, where u_m is the speed limit and ρ_j is the jamming density. For the initial conditions:

$$\rho(x, 0) = \begin{cases}
\rho_0 & \text{for } x < 0, \\
\rho_0 (L - x)/L & \text{for } 0 < x < L, \\
0 & \text{for } L < x,
\end{cases}$$
(2.1)

where $0 < \rho_0 < \rho_j$ and 0 < L, determine and sketch $\rho(x, t)$.

2.2 Answer: Solve initial value problem

Note: $c = c(\rho) = \frac{\mathrm{d}(\rho \, u)}{\mathrm{d}\rho} = u_m \left(1 - \frac{3 \, \rho^2}{\rho_j^2}\right)$ is a **decreasing** function of ρ . We solve using characteristics:

Region (1) (x < 0 at t = 0). Here $\rho = \rho_0$ along $x = c_0 t + \zeta$, where $\zeta < 0$ and $c_0 = c(\rho_0)$, with $c_0 < u_m$. Eliminating ζ , it follows that $\rho = \rho_0$ for $x < c_0 t$.

Region (2) (0
$$\leq x \leq L$$
 at $t = 0$). Here $\rho = \frac{\rho_0 (L - \zeta)}{L}$ along $x = c \left(\frac{\rho_0 (L - \zeta)}{L}\right) t + \zeta$, where $0 \leq \zeta \leq L$.

Eliminating
$$\zeta$$
, it follows that $\rho = \frac{-L \rho_0}{2 t (u_m - c_0)} \left(1 - \sqrt{1 + \frac{4 t (u_m - c_0) \lambda}{L^2}} \right)$,

where $\lambda = u_m t + L - x$, and $c_0 t \le x \le u_m t + L$.

Summarizing, we have (see figure 2.1)

$$\rho(x,t) = \begin{cases} \rho_0 & \text{for } x < c_0 t, \\ \frac{-L \rho_0}{2 t (u_m - c_0)} \left(1 - \sqrt{1 + \frac{4 t (u_m - c_0) \lambda}{L^2}} \right) & \text{for } c_0 t \le x \le u_m t + L, \\ 0 & \text{for } u_m t + L < x, \end{cases}$$
(2.2)

Figure 2.1: Haberman 7402. Solution the the initial value problem posed in equation (2.1), for $c(\rho_0) < 0$, plotted for some arbitrary t > 0. The case $c(\rho_0) > 0$ is similar.

3 Haberman 7701. Shock velocity when $u = u(\rho)$ is linear

3.1 Statement: Shock velocity when $u = u(\rho)$ is linear

If $u = u_{\text{max}} (1 - \rho/\rho_{\text{max}})$, what is the velocity of a traffic shock separating the densities ρ_0 and ρ_1 ? Simplify the expression as much as possible. Show that the shock velocity is the average of the density wave velocities associated with ρ_0 and ρ_1 .

3.2 Answer: Shock velocity when $u = u(\rho)$ is linear

The shock speed s is given by the formula

$$s = \frac{[q]}{[\rho]} = \frac{q_1 - q_0}{\rho_1 - \rho_0},\tag{3.1}$$

where $q = \rho u = \rho u_{\text{max}} (1 - \rho / \rho_{\text{max}}), q_0 = q(\rho_0), \text{ and } q_1 = q(\rho_1).$

We note that $q = q(\rho)$ is a **quadratic** function of ρ . Thus, we can write:

$$q_1 = q_0 + c_0 (\rho_1 - \rho_0) + \frac{1}{2} d_0 (\rho_1 - \rho_0)^2,$$
 (3.2)

$$c_1 = c_0 + d_0 (\rho_1 - \rho_0), (3.3)$$

where $c = c(\rho) = \frac{dq}{d\rho}$, $c_0 = c(\rho_0)$, $c_1 = c(\rho_1)$, and $d_0 = \frac{d^2q}{d\rho^2}(\rho_0)$. Substituting these expansions into the equation for the shock speed above in (3.1), we find:

$$s = c_0 + \frac{1}{2} d_0 (\rho_1 - \rho_0) = \frac{1}{2} (c_0 + c_1).$$
(3.4)

Since $c = u_{\text{max}} (1 - 2 \rho / \rho_{\text{max}})$, this last equation can also be written in the form:

$$s = u_{\text{max}} - \frac{u_{\text{max}}}{\rho_{\text{max}}} \left(\rho_0 + \rho_1 \right). \tag{3.5}$$

Haberman 7902. Shock velocity 4

4.1 Statement: Shock velocity

Determine the velocity of the shock. Briefly give a physical explanation of the result. What does this shock correspond to?

$$\rho(x, 0) = \begin{cases} \rho_0 & \text{for } x > 0, \\ 0 & \text{for } x < 0. \end{cases}$$
 (4.1)

(4.2)

 $s = \frac{q(\rho_0) - q(0)}{\rho_0 - 0} = \frac{q(\rho_0)}{\rho_0} = u(\rho_0).$

4.2Answer: Shock velocity

Since c is a decreasing function of ρ , $c(0) > c(\rho_0)$. Thus these initial conditions give rise to a shock, with speed:

This should not be surprising. The shock is the position of the

last car in a uniform stream of traffic at density ρ_0 . Obviously, this car moves at speed $u(\rho_0)$.

KiNe03. Initial value problem with Q quadratic 5

Statement: Initial value problem with Q quadratic

Consider the traffic flow equation

$$\rho_t + q_x = 0, (5.1)$$

(5.5)

for a flow $q = Q(\rho)$ that is a quadratic function of ρ . In this case $c = dQ/d\rho$ is a conserved quantity as well (why?). Thus the problem (including shocks, if any) can be entirely formulated in terms of c, which satisfies

$$c_t + \left(\frac{1}{2}c^2\right)_x = 0. (5.2)$$

1. Consider the initial value problem determined by (5.2) and ¹

$$c(x, 0) = 0$$
 for $x \le 0$ and $c(x, 0) = 2\sqrt{x} \ge 0$ for $x \ge 0$. (5.3)

Without actually solving the problem, argue that the solution to this problem must have the form

$$c = t f(x/t^2)$$
 for $t > 0$, for some function f . (5.4)

Hint. Let c = c(x, t) be the solution. For any constant a > 0, define $\mathcal{C} = \mathcal{C}(x, t)$ by $\mathcal{C} = \frac{1}{a} c(a^2 x, a t)$. What problem does \mathcal{C} satisfy? Use now the fact that the solution to (5.2-5.3) is unique to show that (5.4) must apply, by selecting the constant a appropriately at any fixed time t > 0.

- 2. Use the method of characteristics to solve the problem in (5.2-5.3). Write the solution explicitly for all t > 0, and verify that it satisfies (5.4). Warning: the solution involves a square root. Be careful to select the correct sign, and to justify your choice.
- 3. For the solution obtained in item 2, evaluate c_x at x = 0 for t > 0. Note that this derivative is discontinuous there, so it has two values (left and right).

5.2 Answer: Initial value problem with Q quadratic

First (note: this was not part of the problem), why is c conserved? The reason is that c has the form $c = \alpha + \beta \rho$, for some constants α and β . Hence $\frac{\mathrm{d}}{\mathrm{d}t} \int_a^b c \, \mathrm{d}x = \beta \, \frac{\mathrm{d}}{\mathrm{d}t} \int_a^b \rho \, \mathrm{d}x = \beta \, q_a - \beta \, q_b$ for any interval [a,b].

Now we proceed with the answer to the problem. Note that where a and its derivatives evaluated at $(a^2 - a, a, t)$. Further

where c and its derivatives evaluated at $(a^2 x, at)$. Further:

Next we solve (5.2–5.3) using characteristics. For $\zeta \leq 0$ we

C(x, 0) = c(x, 0). It follows that C = c, that is:

Now, evaluate (5.6) at t = 1/a.

Since a > 0 is arbitrary, it follows that

which is (5.4) with $f(\xi) = c(\xi, 1)$.

 $c(x, t) = \frac{1}{a} c(a^2 x, a t)$ for any a > 0. (5.6)

$$c(x, t) = t c(x/t^2, 1)$$
 for any $t > 0$, (5.7)

 $C_t = c_t$ and $(C^2)_x = (c^2)_x$,

obtain c=0 along $x=\zeta$. Hence these characteristics give On the other hand, for $\zeta \geq 0$ the characteristics give c=2 c=2 c=2

these characteristics give c = 0 for $x \le 0$. (5.8) we characteristics give $c = 2\sqrt{\zeta}$ along

 $x = 2\sqrt{\zeta} t + \zeta$. Thus †

$$c = 2\left(\sqrt{x+t^2} - t\right) = 2t\left(\sqrt{1+\frac{x}{t^2}} - 1\right) \text{ for } x \ge 0.$$
 (5.9)

† As ζ varies from $\zeta=0$ to $\zeta=\infty$, the characteristics $x=2\sqrt{\zeta}\,t+\zeta$ cover the entire region $x\geq 0$. Further, they do so one-to-one, since $\partial_\zeta x=1+t/\sqrt{\zeta}>0$. Hence we can solve for ζ as a function of $(x,\,t)$. To do so we write these characteristics in the form $(t+\sqrt{\zeta})^2=x+t^2$, so that $\sqrt{\zeta}=-t+\sqrt{x+t^2}$. Note that, since $\sqrt{\zeta}\geq 0$ is required, the positive square root $\sqrt{x+t^2}$ must be selected.

The solution to (5.2-5.3) is given by (5.8-5.9). This

clearly satisfies (5.4), with
$$f(z)=0$$
 for $z<0$, and $f(z)=2\left(\sqrt{1+z}-1\right)$ for $z>0$. (5.10)

Finally, from (5.8–5.9), at x = 0 and t > 0, $c_x = 0$ from the left, and $c_x = 1/t$ from the right. (5.11)

¹ In a traffic problem, c must satisfy $c(\rho_j) \le c \le c(0)$. Ignore the fact that this does not apply for (5.2).

² Note that here we take $\sqrt{\zeta} > 0$ to match the initial data for c.

Note that, as $t \to 0$, $c_x \to \infty$ on the right (which matches the initial data).

6 Linear 1st order PDE (problem 09)

6.1 Statement: Linear 1st order PDE (problem 09)

Surface Evolution. The evolution of a material surface can (sometimes) be modeled by a pde. In evaporation dynamics, where the material evaporates into the surrounding environment, consider a surface described in terms of its "height" h = h(x, y, t) relative to the (x, y)-plane of reference. Under appropriate conditions, a rather complicated pde can be written 3 for h. Here we consider a (drastically) simplified version of the problem, where the governing equation is

$$h_t = \frac{A}{r} h_r$$
, for $r = \sqrt{x^2 + y^2} > 0$ and $t > 0$, where $A > 0$ is a constant. (6.1)

Axial symmetry is assumed, so that h = h(r, t). Obviously, h should be an even function of r. This is both evident from the symmetry, and necessary in the equation to avoid singular behavior at the origin. Assume now

$$h(r, 0) = H(r^2),$$
 (6.2)

where H is a smooth function describing a localized bump. Specifically: (i) H(0) > 0, (ii) H is monotone decreasing. (iii) $H \to 0$ as $r \to \infty$. Note that h(r, 0) is an even function of r.

- 1. Using the theory of characteristics, write an explicit formula for the solution of (6.1 6.2).
- **2.** Do a sketch of the characteristics in space time i.e.: r > 0 and t > 0.
- **3.** What happens with the characteristic starting at $r = \zeta > 0$ and t = 0 when $t = \zeta^2/2$ A?
- **4.** Show that the resulting solution is an even function of r for all times.
- **5.** Show that, as $t \to \infty$, the bump shrinks and vanishes. **Hint.** Pick some example function H with the properties above, and plot the solution for various times. This will help you figure out why the bump shrinks and vanishes.

6.2 Answer: Linear 1st order PDE (problem 09)

The characteristic form of equation (6.1) is

$$\frac{dh}{dt} = 0$$
 along the curves $\frac{dr}{dt} = -\frac{A}{r}$. (6.3)

This yields

$$r = \sqrt{\zeta^2 - 2At}$$
 and $h = H(\zeta^2)$, (6.4)

for the characteristic that starts (time t = 0) at $0 < r = \zeta < \infty$. The characteristics are parabolas pointing downward in space-time, with their "tips" along the time axis. When a characteristic reaches the origin, it exits the domain where the equation is valid, and it ends. See figure 6.1.

From the left equation in (6.4), we see that $\zeta^2 = r^2 + 2At$. Thus the solution to the problem in (6.1 – 6.2) is

$$h = H(r^2 + 2At). (6.5)$$

 $^{^3}$ From mass conservation, with the details of the physics going into modeling the flux and sink/source terms.

Figure 6.1: Linear 1st order pde #09 problem. Left: plot of a few typical characteristic curves for equation (6.1). Right: plots of the solution for $H(z) = \operatorname{sech}(z)$, A = 1, and times (top to bottom) t = 0, 1/4, 1/2, 3/4, 1.

Clearly, this is an even function of r for all times. Furthermore, since H vanishes as it's argument goes to infinity, the bump described by (6.5) shrinks and vanishes as $t \to \infty$. See figure 6.1.

THE END.