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1 Haberman 7401. Solve initial value problem

1.1 Statement: Solve initial value problem

Assume that u(ρ) = um (1− ρ/ρj), where um is the speed limit and ρj is the jamming density. For the initial

conditions:

ρ(x, 0) =


ρ0 for x < 0,

ρ0 (L− x)/L for 0 ≤ x ≤ L,
0 for L < x,

(1.1)

where 0 < ρ0 < ρj and 0 < L, determine and sketch ρ(x, t).

1
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1.2 Answer: Solve initial value problem

Note that c = c(ρ) =
d(ρ u)

dρ
= um

(
1− 2 ρ

ρj

)
is a decreasing function of ρ. We now solve using characteristics, as

follows:

Region (1) (x < 0 at t = 0). Here ρ = ρ0 along x = c0 t+ ζ, where ζ < 0

and c0 = c(ρ0), with c0 < um. Eliminating ζ, it follows that . . . . . . . . . . . . . . . . . . . . . . ρ = ρ0 for x < c0 t.

Region (2) (0 ≤ x ≤ L at t = 0). Here ρ =
ρ0 (L− ζ)

L
along x = c

(
ρ0 (L− ζ)

L

)
t+ ζ,

where 0 ≤ ζ ≤ L.

Eliminating ζ, it follows that . . . . . . . . . . . . . . . . . . . . . . . ρ =
um t+ L− x

(um − c0) t+ L
ρ0 for c0 t ≤ x ≤ um t+ L.

Region (3) (L < x at t = 0). Here ρ = 0 along x = um t+ ζ,

where L < ζ. Eliminating ζ, it follows that . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ρ = 0 for um t+ L < x.

Summarizing, we have (see figure 1.1)

ρ(x, t) =


ρ0 for x < c0 t.
um t+ L− x

(um − c0) t+ L
ρ0 for c0 t ≤ x ≤ um t+ L.

0 for um t+ L < x.

(1.2)

 0 c0t  umt + L

 !0

 x

 !(x, t)

 Solution,
 case c0 < 0.

Figure 1.1: Haberman 7401. Solution to the initial value problem posed in equation (1.1), for the case c(ρ0) < 0,

plotted for some arbitrary t > 0. The case c(ρ0) > 0 is similar.

2 Haberman 7402. Solve initial value problem

2.1 Statement: Solve initial value problem

Assume that u(ρ) = um (1− ρ2/ρ2j ), where um is the speed limit and ρj is the jamming density. For the initial

conditions:

ρ(x, 0) =


ρ0 for x < 0,

ρ0 (L− x)/L for 0 < x < L,

0 for L < x,

(2.1)

where 0 < ρ0 < ρj and 0 < L, determine and sketch ρ(x, t).
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2.2 Answer: Solve initial value problem

Note: c = c(ρ) =
d(ρ u)

dρ
= um

(
1− 3 ρ2

ρ2j

)
is a decreasing function of ρ. We solve using characteristics:

Region (1) (x < 0 at t = 0). Here ρ = ρ0 along x = c0 t+ ζ,

where ζ < 0 and c0 = c(ρ0), with c0 < um. Eliminating ζ, it follows that . . . . . . . . . . ρ = ρ0 for x < c0 t.

Region (2) (0 ≤ x ≤ L at t = 0). Here ρ =
ρ0 (L− ζ)

L
along x = c

(
ρ0 (L− ζ)

L

)
t+ ζ,

where 0 ≤ ζ ≤ L.

Eliminating ζ, it follows that . . . . . . . . . . . . . . . . . . . . . . . . . ρ =
−Lρ0

2 t (um − c0)

1−

√
1 +

4 t (um − c0)λ
L2

,

where λ = um t+ L− x, and c0 t ≤ x ≤ um t+ L.

Region (3) (L < x at t = 0). Here ρ = 0 along x = um t+ ζ,

where L < ζ. Eliminating ζ, it follows that . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ρ = 0 for um t+ L < x.

Summarizing, we have (see figure 2.1)

ρ(x, t) =


ρ0 for x < c0 t,

−Lρ0
2 t (um − c0)

(
1−

√
1 +

4 t (um − c0)λ

L2

)
for c0 t ≤ x ≤ um t+ L,

0 for um t+ L < x,

(2.2)

 0 c0t  umt + L

 !0

 x

 !(x, t)

 Solution,
 case c0 < 0.

Figure 2.1: Haberman 7402. Solution the the initial value problem posed in equation (2.1), for c(ρ0) < 0, plotted for

some arbitrary t > 0. The case c(ρ0) > 0 is similar.

3 Haberman 7701. Shock velocity when u = u(ρ) is linear

3.1 Statement: Shock velocity when u = u(ρ) is linear

If u = umax (1−ρ/ρmax), what is the velocity of a traffic shock separating the densities ρ0 and ρ1? Simplify the

expression as much as possible. Show that the shock velocity is the average of the density wave velocities associated

with ρ0 and ρ1.
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3.2 Answer: Shock velocity when u = u(ρ) is linear

The shock speed s is given by the formula

s =
[ q ]

[ ρ ]
=
q1 − q0
ρ1 − ρ0

, (3.1)

where q = ρ u = ρ umax (1− ρ/ρmax), q0 = q(ρ0), and q1 = q(ρ1).

We note that q = q(ρ) is a quadratic function of ρ. Thus, we can write:

q1 = q0 + c0 (ρ1 − ρ0) +
1

2
d0 (ρ1 − ρ0)2, (3.2)

c1 = c0 + d0 (ρ1 − ρ0), (3.3)

where c = c(ρ) = dq
dρ

, c0 = c(ρ0), c1 = c(ρ1), and d0 = d2q
dρ2 (ρ0). Substituting these expansions into the

equation for the shock speed above in (3.1), we find:

s = c0 +
1

2
d0 (ρ1 − ρ0) =

1

2
(c0 + c1). (3.4)

Since c = umax (1− 2 ρ/ρmax), this last equation can also be written in the form:

s = umax −
umax

ρmax
(ρ0 + ρ1). (3.5)

4 Haberman 7902. Shock velocity

4.1 Statement: Shock velocity

Suppose that ρ(x, 0) =

{
ρ0 for x > 0,

0 for x < 0.
(4.1)

Determine the velocity of the shock. Briefly give a physical

explanation of the result. What does this shock correspond to?

4.2 Answer: Shock velocity

Since c is a decreasing function of ρ, c(0) > c(ρ0). Thus

these initial conditions give rise to a shock, with speed: s =
q(ρ0)− q(0)

ρ0 − 0
=
q(ρ0)

ρ0
= u(ρ0). (4.2)

This should not be surprising. The shock is the position of the

last car in a uniform stream of traffic at density ρ0. Obviously, this car moves at speed u(ρ0).

5 KiNe03. Initial value problem with Q quadratic

5.1 Statement: Initial value problem with Q quadratic

Consider the traffic flow equation
ρt + qx = 0, (5.1)
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for a flow q = Q(ρ) that is a quadratic function of ρ. In this case c = dQ/dρ is a conserved quantity as well (why?).

Thus the problem (including shocks, if any) can be entirely formulated in terms of c, which satisfies

ct +

(
1

2
c2
)

x

= 0. (5.2)

1. Consider the initial value problem determined by (5.2) and 1

c(x, 0) = 0 for x ≤ 0 and c(x, 0) = 2
√
x ≥ 0 for x ≥ 0. (5.3)

Without actually solving the problem, argue that the solution to this problem must have the form

c = t f(x/t2) for t > 0, for some function f. (5.4)

Hint. Let c = c(x, t) be the solution. For any constant a > 0, define C = C(x, t) by C = 1
a
c(a2 x, a t). What

problem does C satisfy? Use now the fact that the solution to (5.2–5.3) is unique to show that (5.4) must apply, by

selecting the constant a appropriately at any fixed time t > 0. ♣

2. Use the method of characteristics to solve the problem in (5.2–5.3). Write the solution explicitly for all t > 0,

and verify that it satisfies (5.4). Warning: the solution involves a square root. Be careful to select the correct sign,

and to justify your choice.

3. For the solution obtained in item 2, evaluate cx at x = 0 for t > 0. Note that this derivative is discontinuous

there, so it has two values (left and right).

5.2 Answer: Initial value problem with Q quadratic

First (note: this was not part of the problem), why is c conserved? The reason is that c has the form c = α+ β ρ,

for some constants α and β. Hence d
dt

∫ b

a
cdx = β d

dt

∫ b

a
ρdx = β qa − β qb for any interval [a, b]. ♣

Now we proceed with the answer to the problem. Note that Ct = ct and (C2)x = (c2)x, (5.5)

where c and its derivatives evaluated at (a2 x, a t). Further:

C(x, 0) = c(x, 0). It follows that C = c, that is: c(x, t) =
1

a
c(a2 x, a t) for any a > 0. (5.6)

Now, evaluate (5.6) at t = 1/a.

Since a > 0 is arbitrary, it follows that c(x, t) = t c(x/t2, 1) for any t > 0, (5.7)

which is (5.4) with f(ξ) = c(ξ, 1).

Next we solve (5.2–5.3) using characteristics. For ζ ≤ 0 we

obtain c = 0 along x = ζ. Hence these characteristics give c = 0 for x ≤ 0. (5.8)

On the other hand, for ζ ≥ 0 the characteristics give 2 c = 2
√
ζ along

x = 2
√
ζ t+ ζ. Thus †

c = 2
(√

x+ t2 − t
)
= 2 t

(√
1 +

x

t2
− 1

)
for x ≥ 0. (5.9)

† As ζ varies from ζ = 0 to ζ =∞, the characteristics x = 2
√
ζ t+ ζ cover the entire region x ≥ 0. Further, they

do so one-to-one, since ∂ζx = 1 + t/
√
ζ > 0. Hence we can solve for ζ as a function of (x, t). To do so we write

these characteristics in the form (t+
√
ζ)2 = x+ t2, so that

√
ζ = −t+

√
x+ t2. Note that, since

√
ζ ≥ 0 is

required, the positive square root
√
x+ t2 must be selected.

The solution to (5.2–5.3) is given by (5.8–5.9). This

clearly satisfies (5.4), with f(z) = 0 for z < 0, and f(z) = 2
(√

1 + z − 1
)

for z > 0. (5.10)

Finally, from (5.8–5.9), at x = 0 and t > 0, cx = 0 from the left, and cx = 1/t from the right. (5.11)

1 In a traffic problem, c must satisfy c(ρj) ≤ c ≤ c(0). Ignore the fact that this does not apply for (5.2).
2 Note that here we take

√
ζ > 0 to match the initial data for c.
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Note that, as t→ 0, cx →∞ on the right (which

matches the initial data).

6 Linear 1st order PDE (problem 09)

6.1 Statement: Linear 1st order PDE (problem 09)

Surface Evolution. The evolution of a material surface can (sometimes) be modeled by a pde. In evaporation

dynamics, where the material evaporates into the surrounding environment, consider a surface described in terms of

its “height” h = h(x, y, t) relative to the (x, y)-plane of reference. Under appropriate conditions, a rather complicated

pde can be written 3 for h. Here we consider a (drastically) simplified version of the problem, where the governing

equation is

ht =
A

r
hr, for r =

√
x2 + y2 > 0 and t > 0, where A > 0 is a constant. (6.1)

Axial symmetry is assumed, so that h = h(r, t). Obviously, h should be an even function of r. This is both evident

from the symmetry, and necessary in the equation to avoid singular behavior at the origin. Assume now

h(r, 0) = H(r2), (6.2)

where H is a smooth function describing a localized bump. Specifically: (i) H(0) > 0, (ii) H is monotone decreasing.

(iii) H → 0 as r →∞. Note that h(r, 0) is an even function of r.

1. Using the theory of characteristics, write an explicit formula for the solution of (6.1 – 6.2).

2. Do a sketch of the characteristics in space time — i.e.: r > 0 and t > 0.

3. What happens with the characteristic starting at r = ζ > 0 and t = 0 when t = ζ2/2A?

4. Show that the resulting solution is an even function of r for all times.

5. Show that, as t→∞, the bump shrinks and vanishes. Hint. Pick some example function H with the properties

above, and plot the solution for various times. This will help you figure out why the bump shrinks and vanishes.

6.2 Answer: Linear 1st order PDE (problem 09)

The characteristic form of equation (6.1) is

dh

dt
= 0 along the curves

dr

dt
= −A

r
. (6.3)

This yields

r =
√
ζ2 − 2A t and h = H(ζ2), (6.4)

for the characteristic that starts (time t = 0) at 0 < r = ζ <∞. The characteristics are parabolas pointing downward

in space-time, with their “tips” along the time axis. When a characteristic reaches the origin, it exits the domain

where the equation is valid, and it ends. See figure 6.1.

From the left equation in (6.4), we see that ζ2 = r2 + 2A t. Thus the solution to the problem in (6.1 – 6.2) is

h = H(r2 + 2A t). (6.5)

3 From mass conservation, with the details of the physics going into modeling the flux and sink/source terms.
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Figure 6.1: Linear 1st order pde #09 problem. Left: plot of a few typical characteristic curves for equation (6.1).

Right: plots of the solution for H(z) = sech(z), A = 1, and times (top to bottom) t = 0, 1/4, 1/2, 3/4, 1.

Clearly, this is an even function of r for all times. Furthermore, since H vanishes as it’s argument goes to infinity,

the bump described by (6.5) shrinks and vanishes as t→∞. See figure 6.1.

THE END.


