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1 Haberman 7401. Solve initial value problem

1.1 Statement: Solve initial value problem

Assume that u(p) = um (1 — p/p;j), where u,, is the speed limit and p; is the jamming density. For the initial

conditions:
00 for z <0,
plxz,0)=4¢ po(L—2)/L for 0<z <L, (1.1)
0 for L <z,

where 0 < pg < p; and 0 < L, determine and sketch p(z, t).
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1.2 Answer: Solve initial value problem

d 2
Note that ¢ = ¢(p) = (pw) = Um (1 - p) is a decreasing function of p. We now solve using characteristics, as

follows: dp Pi

Region (1) (x < 0 at t = 0). Here p = po along = =cot+ ¢, where (<0

and c¢o = ¢(pg), with ¢y < y,. Eliminating ¢, it follows that ............ ... ... p=po for =z < cgt.
L - L—

Region (2) (0 < x < L att =0). Here p= M along z =c¢ ('OO(LO> t+¢,

where 0 < ( < L.

Eliminating ¢, it follows that ....................... p= po for cot < x < u,t+ L.

(U —co)t+ L

Region (3) (L < x at t = 0). Here p=0 along = = u;,t+(,
where L < (. Eliminating ¢, it follows that ......... ... ... ... ... .. ... p=0 for u,t+ L <z

Summarizing, we have (see figure 1.1)

00 for x < ¢pt.
Unt+L —2x
= _ <zx< . .
p(z, t) (um—co)t—i—LpO for cot <ax < uUmt+L (1.2)
0 for upt+L <.
§ ox 1)
Solution,

— | casec <0.

X

c t 0 u t+L
0 m

Figure 1.1: Haberman 7401. Solution to the initial value problem posed in equation (1.1), for the case c¢(pg) < 0,
plotted for some arbitrary ¢t > 0. The case ¢(pg) > 0 is similar.

2 Haberman 7402. Solve initial value problem

2.1 Statement: Solve initial value problem

Assume that u(p) = u, (1 — p2/p?)7 where u,, is the speed limit and p; is the jamming density. For the initial

conditions:
00 for x <0,
p(x,0) =< po(L—2)/L for 0 <z <L, (2.1)
0 for L <z,

where 0 < pg < p;j and 0 < L, determine and sketch p(z, t).
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2.2 Answer: Solve initial value problem

d(pu) 3p7 . . . . -
Note: ¢ =c¢(p) = = Um 1 — —5- | is a decreasing function of p. We solve using characteristics:
p Pj

Region (1) (x < 0 at t = 0). Here p = po along =z =cot+ ¢,
where ¢ <0 and ¢y = ¢(pp), with ¢o < w,. Eliminating ¢, it follows that .......... p=po for T < cgt.

L— L —
Region (2) (0 <z < Latt=0). Herep= M along :c:c(po(LO) t+¢,
where 0 < ( < L.

o . —L po 4t (U — Co) A
Eliminating , it follows that ......................... p=———4|[1—/1+ ————"— |,
2t (Um — Co) L2
where A =y, t+ L —x, and cgt <z < u,t+ L.
Region (3) (L < x at t = 0). Here p =0 along = = uy,t+(,
where L < . Eliminating ¢, it follows that ........ ... ... ... ... oL, p=0 for u,,t+ L < .
Summarizing, we have (see figure 2.1)
Po for x < ¢pt,
—L po \/ At (U — o) A
t)y=¢ ———— [1—/1+ ————— f t<z<u,t+1L, 2.2
Pz 1) 2t(um—co>( - L2 or Cot =& % Um bt (22)
0 for umt+ L <x,
b o 1)
Solution,
Yo case c <0.
X
Cot 0 u t+L
m

Figure 2.1: Haberman 7402. Solution the the initial value problem posed in equation (2.1), for ¢(pg) < 0, plotted for
some arbitrary t > 0. The case ¢(pg) > 0 is similar.

3 Haberman 7701. Shock velocity when u = u(p) is linear

3.1 Statement: Shock velocity when u = u(p) is linear

If u = umax (1 — p/pPmax), what is the velocity of a traffic shock separating the densities pg and p;? Simplify the
expression as much as possible. Show that the shock velocity is the average of the density wave velocities associated

with py and p;.
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3.2 Answer: Shock velocity when u = u(p) is linear

The shock speed s is given by the formula

§ = —= ,
[p] P1 — Po

where ¢ = pu = pumax (1 — p/pmax); @ = q(po), and g1 = q(p1).

[ ] _ q1 — qo (3.1)

We note that ¢ = ¢(p) is a quadratic function of p. Thus, we can write:

1
@ = go+colpr—po)+5dolpr— 00)?, (32)
c1 = co+do(p1— po) (3.3)
where ¢ = ¢(p) = g—g, co = ¢(po), c1 = c(p1), and dog = 327‘2’(;)0). Substituting these expansions into the

equation for the shock speed above in (3.1), we find:

1 1
S:CO+§d0 (pl —po): 5(00+Cl)~ (34)

Since ¢ = umax (1 — 2 p/pmax), this last equation can also be written in the form:

Umax

(po + p1)- (3.5)

S = Umax —
Pmax

4 Haberman 7902. Shock velocity

4.1 Statement: Shock velocity

fi 0
Suppose that p(x, 0) = { go for N z 0’ (4.1)
Determine the velocity of the shock. Briefly give a physical or e '

explanation of the result. What does this shock correspond to?

4.2 Answer: Shock velocity

Since ¢ is a decreasing function of p, ¢(0) > ¢(pg). Thus
- L ; . _ a(po) —4(0) _ gq(po) _

these initial conditions give rise to a shock, with speed: s = 0 = =u(po). (4.2)

Po — Po

This should not be surprising. The shock is the position of the
last car in a uniform stream of traffic at density pg. Obviously, this car moves at speed u(pp).

5 KilNe03. Initial value problem with @ quadratic

5.1 Statement: Initial value problem with Q) quadratic

Consider the traffic flow equation
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for a flow ¢ = Q(p) that is a quadratic function of p. In this case ¢ = dQ/dp is a conserved quantity as well (why?).
Thus the problem (including shocks, if any) can be entirely formulated in terms of ¢, which satisfies

o+ (; cQ)x =0. (5.2)

1. Consider the initial value problem determined by (5.2) and !
c(z,0)=0 for x <0 and c(z,0)=2yz>0 for z>0. (5.3)
Without actually solving the problem, argue that the solution to this problem must have the form
c=tf(x/t?) for t >0, for some function f. (5.4)
Hint. Let ¢ = ¢(x, t) be the solution. For any constant a > 0, define C =C(x, t) by C = %c(a2 x, at). What

problem does C satisfy? Use now the fact that the solution to (5.2-5.3) is unique to show that (5.4) must apply, by
selecting the constant a appropriately at any fixed time ¢ > 0. &

2. Use the method of characteristics to solve the problem in (5.2-5.3). Write the solution explicitly for all ¢ > 0,
and verify that it satisfies (5.4). Warning: the solution involves a square root. Be careful to select the correct sign,
and to justify your choice.

3. For the solution obtained in item 2, evaluate c, at * = 0 for t > 0. Note that this derivative is discontinuous
there, so it has two values (left and right).

5.2 Answer: Initial value problem with Q quadratic

First (note: this was not part of the problem), why is ¢ conserved? The reason is that ¢ has the form ¢ = a + §p,

for some constants o and 3. Hence % ff cdx = p % f; pdx = Bq, — Bqp for any interval [a, b]. &
Now we proceed with the answer to the problem. Note that Ci=c; and (C?y = (c®)z, (5.5)
where ¢ and its derivatives evaluated at (a? z, at). Further: 1
C(x, 0) = ¢(x, 0). It follows that C = ¢, that is: c(x, t) = —c(a’zx, at) forany a > 0. (5.6)
Now, evaluate (5.6) at t = 1/a. @
Since a > 0 is arbitrary, it follows that c(z, t) =tc(x/t?, 1) forany t >0, (5.7)

which is (5.4) with f(&) = ¢(&, 1).

Next we solve (5.2-5.3) using characteristics. For ¢ <0 we
obtain ¢ = 0 along x = (. Hence these characteristics give c=0 for £ <0. (5.8)
On the other hand, for ¢ > 0 the characteristics give? ¢ = 2 \/E along

x=2./Ct+¢ Thust
c:2(\/m+t2—t)=2t (,/1+;—1) for = > 0. (5.9)

T As ¢ varies from ¢ = 0 to ¢ = oo, the characteristics x = 2/C t + ¢ cover the entire region > 0. Further, they
do so one-to-one, since 8¢x = 1 + t/+/{ > 0. Hence we can solve for ¢ as a function of (x, t). To do so we write

these characteristics in the form (t + +/C)? = x + t2, so that +/C = —t 4+ /= + £2. Note that, since v/ > 0 is
required, the positive square root /& + t2 must be selected.

The solution to (5.2-5.3) is given by (5.8-5.9). This

clearly satisfies (5.4), with f(z) =0 for z<0, and f(z)=2 (\/1 Tz 1) for z>0. (5.10)
Finally, from (5.8-5.9), at =0 and ¢ > 0, ¢z = 0 from the left, and ¢, = 1/t from the right. (5.11)

LIn a traffic problem, ¢ must satisfy c(p;) < ¢ < ¢(0). Ignore the fact that this does not apply for (5.2).
2 Note that here we take \/Z > 0 to match the initial data for c.
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Note that, as t — 0, ¢, — 0o on the right (which
matches the initial data).

6 Linear 1st order PDE (problem 09)

6.1 Statement: Linear 1st order PDE (problem 09)

Surface Evolution.  The evolution of a material surface can (sometimes) be modeled by a pde. In evaporation
dynamics, where the material evaporates into the surrounding environment, consider a surface described in terms of
its “height” h = h(z, y, t) relative to the (z, y)-plane of reference. Under appropriate conditions, a rather complicated
pde can be written? for h. Here we consider a (drastically) simplified version of the problem, where the governing
equation is

hy = éhr, for r=+/22+9y%2 >0 and t >0, where A >0 is a constant. (6.1)

Axial symmetry is assumed, so that h = h(r, t). Obviously, h should be an even function of r. This is both evident
from the symmetry, and necessary in the equation to avoid singular behavior at the origin. Assume now

h(r, 0) = H(r?), (6.2)
where H is a smooth function describing a localized bump. Specifically: (i) H(0) > 0, (ii) H is monotone decreasing.
(iii) H — 0 as 7 — oco. Note that h(r, 0) is an even function of r.

1. Using the theory of characteristics, write an explicit formula for the solution of (6.1 — 6.2).
Do a sketch of the characteristics in space time — i.e.: 7 > 0 and t > 0.
What happens with the characteristic starting at » = ¢ > 0 and t =0 when ¢t = (2/2 A?

Show that the resulting solution is an even function of r for all times.

@ R wbN

Show that, as ¢ — oo, the bump shrinks and vanishes. Hint. Pick some example function H with the properties

above, and plot the solution for various times. This will help you figure out why the bump shrinks and vanishes.

6.2 Answer: Linear 1st order PDE (problem 09)
The characteristic form of equation (6.1) is

dh dr A
i 0 along the curves == (6.3)

This yields

r=+/C2—2At and h= H((?), (6.4)

for the characteristic that starts (time ¢ = 0) at 0 < r = ¢ < co. The characteristics are parabolas pointing downward
in space-time, with their “tips” along the time axis. When a characteristic reaches the origin, it exits the domain
where the equation is valid, and it ends. See figure 6.1.

From the left equation in (6.4), we see that ¢ = 72 + 2 At. Thus the solution to the problem in (6.1 — 6.2) is

h=H(r*+2At). (6.5)

3 From mass conservation, with the details of the physics going into modeling the flux and sink/source terms.
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Characteristics; case A = 1. Solution for various times.
1f : : : ' ' :

0.8}
0.4} -

0.2}

Figure 6.1: Linear 1st order pde #09 problem. Left: plot of a few typical characteristic curves for equation (6.1).
Right: plots of the solution for H(z) = sech(z), A =1, and times (top to bottom) ¢t =0, 1/4, 1/2, 3/4, 1.

Clearly, this is an even function of r for all times. Furthermore, since H vanishes as it’s argument goes to infinity,
the bump described by (6.5) shrinks and vanishes as t — co. See figure 6.1.

THE END.



