Answers to P-Set \# 04, 18.300 MIT (Spring 2022)

Rodolfo R. Rosales (MIT, Math. Dept., room 2-337, Cambridge, MA 02139)
March 9, 2022

Contents

1 Haberman 7401. Solve initial value problem 1
1.1 Statement: Solve initial value problem 1
1.2 Answer: Solve initial value problem 2
2 Haberman 7402. Solve initial value problem 2
2.1 Statement: Solve initial value problem 2
2.2 Answer: Solve initial value problem 3
3 Haberman 7701. Shock velocity when $u=u(\rho)$ is linear 3
Shock velocity is average of characteristic velocities for $u=u(\rho)$ linear 3
3.1 Statement: Shock velocity when $u=u(\rho)$ is linear 3
3.2 Answer: Shock velocity when $u=u(\rho)$ is linear 4
4 Haberman 7902. Shock velocity 4
4.1 Statement: Shock velocity 4
4.2 Answer: Shock velocity 4
5 KiNe03. Initial value problem with Q quadratic 4
Similarity solution (case with no shock) 4
5.1 Statement: Initial value problem with \boldsymbol{Q} quadratic 4
5.2 Answer: Initial value problem with \boldsymbol{Q} quadratic 5
6 Linear 1st order PDE (problem 09) 6
Surface evolution. Solve $h_{t}=(A / r) h_{r}$ 6
6.1 Statement: Linear 1st order PDE (problem 09) 6
6.2 Answer: Linear 1st order PDE (problem 09) 6
List of Figures
1.1 Haberman 7401. Initial value problem with c linear in ρ 2
2.1 Haberman 7402. Initial value problem with c quadratic in ρ 3
6.1 Surface evolution and characteristics 7

1 Haberman 7401. Solve initial value problem

1.1 Statement: Solve initial value problem

Assume that $u(\rho)=u_{m}\left(1-\rho / \rho_{j}\right)$, where u_{m} is the speed limit and ρ_{j} is the jamming density. For the initial conditions:

$$
\rho(x, 0)= \begin{cases}\rho_{0} & \text { for } x<0, \tag{1.1}\\ \rho_{0}(L-x) / L & \text { for } 0 \leq x \leq L, \\ 0 & \text { for } L<x,\end{cases}
$$

where $0<\rho_{0}<\rho_{j}$ and $0<L$, determine and sketch $\rho(x, t)$.

1.2 Answer: Solve initial value problem

Note that $c=c(\rho)=\frac{\mathrm{d}(\rho u)}{\mathrm{d} \rho}=u_{m}\left(1-\frac{2 \rho}{\rho_{j}}\right)$ is a decreasing function of ρ. We now solve using characteristics, as follows:

Region (1) ($\boldsymbol{x}<\mathbf{0}$ at $\boldsymbol{t}=\mathbf{0}$). Here $\rho=\rho_{0}$ along $x=c_{0} t+\zeta$, where $\zeta<0$
and $c_{0}=c\left(\rho_{0}\right)$, with $c_{0}<u_{m}$. Eliminating ζ, it follows that $\ldots \ldots \ldots \ldots \ldots \ldots \ldots .$.
Region (2) $\mathbf{(0 \leq x \leq L}$ at $\boldsymbol{t}=\mathbf{0}$). Here $\rho=\frac{\rho_{0}(L-\zeta)}{L}$ along $x=c\left(\frac{\rho_{0}(L-\zeta)}{L}\right) t+\zeta$, where $0 \leq \zeta \leq L$.
Eliminating ζ, it follows that $\ldots \ldots \ldots \ldots \ldots \ldots \ldots . \rho=\frac{u_{m} t+L-x}{\left(u_{m}-c_{0}\right) t+L} \rho_{0}$ for $c_{0} t \leq x \leq u_{m} t+L$.
Region (3) ($L<\boldsymbol{x}$ at $\boldsymbol{t}=\mathbf{0}$). Here $\rho=0$ along $x=u_{m} t+\zeta$,
where $L<\zeta$. Eliminating ζ, it follows that $\ldots \ldots . \ldots=0$ for $\boldsymbol{u}_{\boldsymbol{m}} \boldsymbol{t}+\boldsymbol{L}<\boldsymbol{L}$.
Summarizing, we have (see figure 1.1)

$$
\rho(x, t)= \begin{cases}\rho_{0} & \text { for } x<c_{0} t \tag{1.2}\\ \frac{u_{m} t+L-x}{\left(u_{m}-c_{0}\right) t+L} \rho_{0} & \text { for } c_{0} t \leq x \leq u_{m} t+L \\ 0 & \text { for } u_{m} t+L<x\end{cases}
$$

Figure 1.1: Haberman 7401. Solution to the initial value problem posed in equation (1.1), for the case $c\left(\rho_{0}\right)<0$, plotted for some arbitrary $t>0$. The case $c\left(\rho_{0}\right)>0$ is similar.

2 Haberman 7402. Solve initial value problem

2.1 Statement: Solve initial value problem

Assume that $u(\rho)=u_{m}\left(1-\rho^{2} / \rho_{j}^{2}\right)$, where u_{m} is the speed limit and ρ_{j} is the jamming density. For the initial conditions:

$$
\rho(x, 0)= \begin{cases}\rho_{0} & \text { for } x<0, \tag{2.1}\\ \rho_{0}(L-x) / L & \text { for } 0<x<L, \\ 0 & \text { for } L<x,\end{cases}
$$

where $0<\rho_{0}<\rho_{j}$ and $0<L$, determine and sketch $\rho(x, t)$.

2.2 Answer: Solve initial value problem

Note: $c=c(\rho)=\frac{\mathrm{d}(\rho u)}{\mathrm{d} \rho}=u_{m}\left(1-\frac{3 \rho^{2}}{\rho_{j}^{2}}\right)$ is a decreasing function of ρ. We solve using characteristics:
Region (1) ($\boldsymbol{x}<\mathbf{0}$ at $\boldsymbol{t}=\mathbf{0}$). Here $\rho=\rho_{0}$ along $x=c_{0} t+\zeta$,
where $\zeta<0$ and $c_{0}=c\left(\rho_{0}\right)$, with $c_{0}<u_{m}$. Eliminating ζ, it follows that $\ldots \ldots \ldots . \boldsymbol{\rho}=\boldsymbol{\rho}_{\mathbf{0}}$ for $\boldsymbol{x}<\boldsymbol{c}_{\mathbf{0}} \boldsymbol{t}$.
Region (2) ($0 \leq \boldsymbol{x} \leq \boldsymbol{L}$ at $\boldsymbol{t}=\mathbf{0}$). Here $\rho=\frac{\rho_{0}(L-\zeta)}{L}$ along $x=c\left(\frac{\rho_{0}(L-\zeta)}{L}\right) t+\zeta$, where $0 \leq \zeta \leq L$.
Eliminating ζ, it follows that $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \rho=\frac{-L \rho_{0}}{2 t\left(u_{m}-c_{0}\right)}\left(1-\sqrt{1+\frac{4 t\left(u_{m}-c_{0}\right) \lambda}{L^{2}}}\right)$, where $\boldsymbol{\lambda}=\boldsymbol{u}_{\boldsymbol{m}} \boldsymbol{t}+\boldsymbol{L}-\boldsymbol{x}$, and $c_{0} t \leq x \leq u_{m} t+L$.

Region (3) ($\boldsymbol{L}<\boldsymbol{x}$ at $\boldsymbol{t}=\mathbf{0}$). Here $\rho=0$ along $x=u_{m} t+\zeta$,

Summarizing, we have (see figure 2.1)

$$
\rho(x, t)= \begin{cases}\rho_{0} & \text { for } x<c_{0} t \tag{2.2}\\ \frac{-L \rho_{0}}{2 t\left(u_{m}-c_{0}\right)}\left(1-\sqrt{1+\frac{4 t\left(u_{m}-c_{0}\right) \lambda}{L^{2}}}\right) & \text { for } c_{0} t \leq x \leq u_{m} t+L \\ 0 & \text { for } u_{m} t+L<x\end{cases}
$$

Figure 2.1: Haberman 7402. Solution the the initial value problem posed in equation (2.1), for $c\left(\rho_{0}\right)<0$, plotted for some arbitrary $t>0$. The case $c\left(\rho_{0}\right)>0$ is similar.

3 Haberman 7701. Shock velocity when $u=u(\rho)$ is linear

3.1 Statement: Shock velocity when $u=u(\rho)$ is linear

If $\boldsymbol{u}=u_{\max }\left(1-\rho / \rho_{\max }\right)$, what is the velocity of a traffic shock separating the densities ρ_{0} and ρ_{1} ? Simplify the expression as much as possible. Show that the shock velocity is the average of the density wave velocities associated with ρ_{0} and ρ_{1}.

3.2 Answer: Shock velocity when $u=u(\rho)$ is linear

The shock speed s is given by the formula

$$
\begin{equation*}
s=\frac{[q]}{[\rho]}=\frac{q_{1}-q_{0}}{\rho_{1}-\rho_{0}}, \tag{3.1}
\end{equation*}
$$

where $q=\rho u=\rho u_{\text {max }}\left(1-\rho / \rho_{\text {max }}\right), q_{0}=q\left(\rho_{0}\right)$, and $q_{1}=q\left(\rho_{1}\right)$.
We note that $q=q(\rho)$ is a quadratic function of ρ. Thus, we can write:

$$
\begin{align*}
& q_{1}=q_{0}+c_{0}\left(\rho_{1}-\rho_{0}\right)+\frac{1}{2} d_{0}\left(\rho_{1}-\rho_{0}\right)^{2}, \tag{3.2}\\
& c_{1}=c_{0}+d_{0}\left(\rho_{1}-\rho_{0}\right), \tag{3.3}
\end{align*}
$$

where $c=c(\rho)=\frac{\mathrm{d} q}{\mathrm{~d} \rho}, c_{0}=c\left(\rho_{0}\right), c_{1}=c\left(\rho_{1}\right)$, and $d_{0}=\frac{\mathrm{d}^{2} q}{\mathrm{~d} \rho^{2}}\left(\rho_{0}\right)$. Substituting these expansions into the equation for the shock speed above in (3.1), we find:

$$
\begin{equation*}
s=c_{0}+\frac{1}{2} d_{0}\left(\rho_{1}-\rho_{0}\right)=\frac{1}{2}\left(c_{0}+c_{1}\right) . \tag{3.4}
\end{equation*}
$$

Since $c=u_{\max }\left(1-2 \rho / \rho_{\max }\right)$, this last equation can also be written in the form:

$$
\begin{equation*}
s=u_{\max }-\frac{u_{\max }}{\rho_{\max }}\left(\rho_{0}+\rho_{1}\right) . \tag{3.5}
\end{equation*}
$$

4 Haberman 7902. Shock velocity

4.1 Statement: Shock velocity

Suppose that
Determine the velocity of the shock. Briefly give a physical

$$
\rho(x, 0)= \begin{cases}\rho_{0} & \text { for } x>0, \tag{4.1}\\ 0 & \text { for } x<0\end{cases}
$$ explanation of the result. What does this shock correspond to?

4.2 Answer: Shock velocity

Since c is a decreasing function of $\rho, c(0)>c\left(\rho_{0}\right)$. Thus these initial conditions give rise to a shock, with speed: This should not be surprising. The shock is the position of the

$$
\begin{equation*}
s=\frac{q\left(\rho_{0}\right)-q(0)}{\rho_{0}-0}=\frac{q\left(\rho_{0}\right)}{\rho_{0}}=u\left(\rho_{0}\right) . \tag{4.2}
\end{equation*}
$$ last car in a uniform stream of traffic at density ρ_{0}. Obviously, this car moves at speed $u\left(\rho_{0}\right)$.

5 KiNe 03 . Initial value problem with Q quadratic

5.1 Statement: Initial value problem with Q quadratic

Consider the traffic flow equation

$$
\begin{equation*}
\rho_{t}+q_{x}=0, \tag{5.1}
\end{equation*}
$$

for a flow $q=Q(\rho)$ that is a quadratic function of ρ. In this case $c=\mathrm{d} Q / \mathrm{d} \rho$ is a conserved quantity as well (why?). Thus the problem (including shocks, if any) can be entirely formulated in terms of c, which satisfies

$$
\begin{equation*}
c_{t}+\left(\frac{1}{2} c^{2}\right)_{x}=0 \tag{5.2}
\end{equation*}
$$

1. Consider the initial value problem determined by (5.2) and ${ }^{1}$

$$
\begin{equation*}
c(x, 0)=0 \text { for } x \leq 0 \text { and } c(x, 0)=2 \sqrt{x} \geq 0 \text { for } x \geq 0 \tag{5.3}
\end{equation*}
$$

Without actually solving the problem, argue that the solution to this problem must have the form

$$
\begin{equation*}
c=t f\left(x / t^{2}\right) \text { for } t>0, \quad \text { for some function } f \tag{5.4}
\end{equation*}
$$

Hint. Let $c=c(x, t)$ be the solution. For any constant $a>0$, define $\mathcal{C}=\mathcal{C}(x, t)$ by $\mathcal{C}=\frac{\mathbf{1}}{\boldsymbol{a}} \boldsymbol{c}\left(\boldsymbol{a}^{\mathbf{2}} \boldsymbol{x}\right.$, $\left.\boldsymbol{a} \boldsymbol{t}\right)$. What problem does \mathcal{C} satisfy? Use now the fact that the solution to (5.2-5.3) is unique to show that (5.4) must apply, by selecting the constant \boldsymbol{a} appropriately at any fixed time $t>0$.
2. Use the method of characteristics to solve the problem in (5.2-5.3). Write the solution explicitly for all $\boldsymbol{t}>\boldsymbol{0}$, and verify that it satisfies (5.4). Warning: the solution involves a square root. Be careful to select the correct sign, and to justify your choice.
3. For the solution obtained in item 2 , evaluate $\boldsymbol{c}_{\boldsymbol{x}}$ at $\boldsymbol{x}=\mathbf{0}$ for $\boldsymbol{t}>\mathbf{0}$. Note that this derivative is discontinuous there, so it has two values (left and right).

5.2 Answer: Initial value problem with Q quadratic

First (note: this was not part of the problem), why is conserved? The reason is that chas the form $c=\alpha+\beta \rho$, for some constants α and β. Hence $\frac{\mathrm{d}}{\mathrm{d} t} \int_{a}^{b} c \mathrm{~d} x=\beta \frac{\mathrm{d}}{\mathrm{d} t} \int_{a}^{b} \rho \mathrm{~d} x=\beta q_{a}-\beta q_{b}$ for any interval $[a, b]$.
Now we proceed with the answer to the problem. Note that

$$
\begin{array}{r}
\mathcal{C}_{t}=c_{t} \quad \text { and } \quad\left(\mathcal{C}^{2}\right)_{x}=\left(c^{2}\right)_{x} \\
c(x, t)=\frac{1}{a} c\left(a^{2} x, a t\right) \quad \text { for any } a>0 \\
c(x, t)=t c\left(x / t^{2}, 1\right) \quad \text { for any } t>0 \tag{5.7}
\end{array}
$$ where c and its derivatives evaluated at $\left(a^{2} x, a t\right)$. Further: $\mathcal{C}(x, 0)=c(x, 0)$. It follows that $\mathcal{C}=c$, that is:

Now, evaluate (5.6) at $t=1 / a$.
Since $a>0$ is arbitrary, it follows that which is (5.4) with $\boldsymbol{f}(\boldsymbol{\xi})=\boldsymbol{c}(\boldsymbol{\xi}, \mathbf{1})$.
Next we solve (5.2-5.3) using characteristics. For $\zeta \leq 0$ we
obtain $c=0$ along $x=\zeta$. Hence these characteristics give

$$
\begin{equation*}
c=0 \text { for } x \leq 0 \tag{5.8}
\end{equation*}
$$

On the other hand, for $\zeta \geq \mathbf{0}$ the characteristics give ${ }^{2} \boldsymbol{c}=\mathbf{2} \sqrt{\zeta}$ along
$x=2 \sqrt{\zeta} t+\zeta$. Thus \dagger

$$
\begin{equation*}
c=2\left(\sqrt{x+t^{2}}-t\right)=2 t\left(\sqrt{1+\frac{x}{t^{2}}}-1\right) \text { for } x \geq 0 \tag{5.9}
\end{equation*}
$$

\dagger As ζ varies from $\zeta=\mathbf{0}$ to $\zeta=\infty$, the characteristics $\boldsymbol{x}=2 \sqrt{\zeta} t+\zeta$ cover the entire region $\boldsymbol{x} \geq \mathbf{0}$. Further, they do so one-to-one, since $\boldsymbol{\partial}_{\zeta} \boldsymbol{x}=\mathbf{1}+\boldsymbol{t} / \sqrt{\zeta}>\mathbf{0}$. Hence we can solve for ζ as a function of $(\boldsymbol{x}, \boldsymbol{t})$. To do so we write these characteristics in the form $(t+\sqrt{\zeta})^{2}=x+t^{2}$, so that $\sqrt{\zeta}=-t+\sqrt{x+t^{2}}$. Note that, since $\sqrt{\zeta} \geq 0$ is required, the positive square root $\sqrt{x+t^{2}}$ must be selected.

The solution to (5.2-5.3) is given by (5.8-5.9). This
clearly satisfies (5.4), with

$$
\begin{equation*}
f(z)=0 \text { for } z<0, \quad \text { and } \quad f(z)=2(\sqrt{1+z}-1) \text { for } z>0 \tag{5.10}
\end{equation*}
$$

Finally, from (5.8-5.9), at $x=0$ and $t>0, \quad \boldsymbol{c}_{\boldsymbol{x}}=\mathbf{0}$ from the left, and $\boldsymbol{c}_{\boldsymbol{x}}=\mathbf{1} / \boldsymbol{t}$ from the right.

[^0]Note that, as $t \rightarrow 0, c_{x} \rightarrow \infty$ on the right (which matches the initial data).

6 Linear 1st order PDE (problem 09)

6.1 Statement: Linear 1st order PDE (problem 09)

Surface Evolution. The evolution of a material surface can (sometimes) be modeled by a pde. In evaporation dynamics, where the material evaporates into the surrounding environment, consider a surface described in terms of its "height" $h=h(x, y, t)$ relative to the (x, y)-plane of reference. Under appropriate conditions, a rather complicated pde can be written ${ }^{3}$ for h. Here we consider a (drastically) simplified version of the problem, where the governing equation is

$$
\begin{equation*}
h_{t}=\frac{A}{r} h_{r}, \quad \text { for } r=\sqrt{x^{2}+y^{2}}>0 \text { and } t>0, \quad \text { where } A>0 \text { is a constant. } \tag{6.1}
\end{equation*}
$$

Axial symmetry is assumed, so that $h=h(r, t)$. Obviously, \boldsymbol{h} should be an even function of \boldsymbol{r}. This is both evident from the symmetry, and necessary in the equation to avoid singular behavior at the origin. Assume now

$$
\begin{equation*}
h(r, 0)=H\left(r^{2}\right) \tag{6.2}
\end{equation*}
$$

where H is a smooth function describing a localized bump. Specifically: (i) $H(0)>0$, (ii) H is monotone decreasing. (iii) $H \rightarrow 0$ as $r \rightarrow \infty$. Note that $\boldsymbol{h}(\boldsymbol{r}, \mathbf{0})$ is an even function of r.

1. Using the theory of characteristics, write an explicit formula for the solution of $(6.1-6.2)$.
2. Do a sketch of the characteristics in space time - i.e.: $r>0$ and $t>0$.
3. What happens with the characteristic starting at $r=\zeta>0$ and $t=0$ when $t=\zeta^{2} / 2 A$?
4. Show that the resulting solution is an even function of r for all times.
5. Show that, as $t \rightarrow \infty$, the bump shrinks and vanishes. Hint. Pick some example function H with the properties above, and plot the solution for various times. This will help you figure out why the bump shrinks and vanishes.

6.2 Answer: Linear 1st order PDE (problem 09)

The characteristic form of equation (6.1) is

$$
\begin{equation*}
\frac{d h}{d t}=0 \quad \text { along the curves } \frac{d r}{d t}=-\frac{A}{r} \tag{6.3}
\end{equation*}
$$

This yields

$$
\begin{equation*}
r=\sqrt{\zeta^{2}-2 A t} \quad \text { and } \quad h=H\left(\zeta^{2}\right) \tag{6.4}
\end{equation*}
$$

for the characteristic that starts (time $t=0$) at $0<r=\zeta<\infty$. The characteristics are parabolas pointing downward in space-time, with their "tips" along the time axis. When a characteristic reaches the origin, it exits the domain where the equation is valid, and it ends. See figure 6.1.

From the left equation in (6.4), we see that $\zeta^{2}=r^{2}+2 A t$. Thus the solution to the problem in $(6.1-6.2)$ is

$$
\begin{equation*}
h=H\left(r^{2}+2 A t\right) . \tag{6.5}
\end{equation*}
$$

[^1]

Solution for various times.

Figure 6.1: Linear 1st order pde \#09 problem. Left: plot of a few typical characteristic curves for equation (6.1). Right: plots of the solution for $H(z)=\operatorname{sech}(z), A=1$, and times (top to bottom) $t=0,1 / 4,1 / 2,3 / 4,1$.

Clearly, this is an even function of r for all times. Furthermore, since H vanishes as it's argument goes to infinity, the bump described by (6.5) shrinks and vanishes as $t \rightarrow \infty$. See figure 6.1.

THE END.

[^0]: ${ }^{1}$ In a traffic problem, c must satisfy $c\left(\rho_{j}\right) \leq c \leq c(0)$. Ignore the fact that this does not apply for (5.2).
 ${ }^{2}$ Note that here we take $\sqrt{\zeta}>0$ to match the initial data for c.

[^1]: ${ }^{3}$ From mass conservation, with the details of the physics going into modeling the flux and sink/source terms.

