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1 Compute a channel flow rate function #01

1.1 Statement: Compute a channel flow rate function #01

It was shown in the lectures that for a river (or a man-made channel) in the plains, under conditions that are not

changing too rapidly (quasi-equilibrium), the following equation should apply

At + qx = 0, (1.1)

where A = A(x, t) is the cross-sectional filled area of the river bed, x measures length along the river, and q = Q(A)

is a function giving the flow rate at any point.

That the flow rate q should be a function of A only 1 follows from the assumption of quasi-equilibrium. Then q is

determined by a local balance between the friction forces and the force of gravity down the river bed.

Assume now a man-made channel, with uniform triangular cross-section† and a uniform (small) downward slope,

characterized by an angle θ. Assume also that the frictional forces are proportional to the product of the flow velocity

u down the channel, and the wetted perimeter Pw of the channel bed Ff = Cf uPw. Derive the form that the flow

function Q should have. † Isosceles triangle, with bottom angle φ.

Hints: (1) Q = uA, where u is determined by the balance of the frictional forces and gravity. (2) The wetted perimeter

Pw is proportional to some power of A.

1.2 Answer: Compute a channel flow rate function #01

The wetted perimeter is proportional to the square root of the filled cross-sectional area. That is: 2 Pw = Cw
√
A,

where Cw =
√

8/ sin(φ) and φ is the bottom angle of the triangular channel bed. Thus the frictional forces (per

unit length) along the river bed are given by Ff = Cf Pw u = Cf Cw u
√
A — where u is the flow velocity and Cf is

a friction coefficient.

On the other hand, the component of the force of gravity (per unit length) along the channel bed is given by

Fg = ρ g sin(θ)A — where θ is the angle that the channel bed makes with the horizontal, g is the acceleration of

gravity, and ρ is the density of the water in the channel.

1 Possibly also x. That is: q = Q(x, A), to account for non-uniformities along the river.
2 Write the height and base of the water-filled-triangle in terms of the half bottom angle and the wetted side = Pw/2.
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From the quasi-equilibrium assumption Ff = Fg. This yields u =
ρ g sin(θ)

Cf Cw

√
A. Hence, since q = uA, it follows

that:

Q =
ρ g sin(θ)

Cf Cw
A

3
2 . (1.2)

Note that q is a convex function of A.

2 Conservation of probability in QM

2.1 Conservation of probability in QM

In non-relativistic quantum mechanics the motion of a point particle in a potential V is described by Schrödinger’s

equation.
i }ψt = − }2

2m
ψxx + V (x)ψ in 1D, (2.1)

where } = h
2π is the Plank constant divided by 2π,

ψ = ψ(x, t) is the (complex valued) wave function,

m the particle’s mass, and i is the imaginary unit.

The interpretation is that 3 ρ̃ = |ψ|2 = ψ ψ∗ (2.2)

is the pdf [probability distribution function] (pdf)

for the particle position. That is, the probability

of finding the particle in any interval a < x < b is 4

∫ b

a

ρ̃ dx. (2.3)

Now: probability is conserved, and ρ̃ is its density. Question: What is the probability flux?

Hint. Use (2.1) to find an equation of the form ρ̃t + q̃x = 0. The flux is then q̃.

Warning: check that the flux you obtain is real valued.

2.2 Answer: Conservation of probability in QM

Multiply (2.1) by ψ∗. Take the resulting equation, and subtract from it its complex conjugate. After a bit of

manipulation, the result can be written in the form

i } ρ̃t +
}2

2m
(ψx ψ

∗ − ψ ψ∗x)x = 0. (2.4)

Thus the probability flux is q̃ =
}

2 im
(ψx ψ

∗ − ψ ψ∗x), (2.5)

which is real valued, as expected.

Alternatively, write the wave function using polar variables ψ = r ei θ, where ρ̃ = r2. Substituting this into (2.1),

multiplying by e−i θ, and taking real and imaginary parts, leads to the two equations

} rt = − }2

2m
(2 rx θx + r θxx) , (2.6)

} r θt =
}2

2m

(
rxx − r θ2x

)
− V r. (2.7)

3 Here ∗ indicates the complex conjugate.
4 ψ should be normalized so that

∫
ρ̃ dx = 1, where the integral is over the whole domain where the particle resides.

The units for ψ are 1/
√

length in 1D.
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Multiplying (2.6) by 2
} r yields

ρ̃t +

(
}
m
ρ̃ θx

)
x

= 0. (2.8)

This corresponds to q̃ =
}
m
ρθx (2.9)

— which, you can check, is the same as (2.5).

2.2.1 Fluid analogy and Madelung

One can associate a flow velocity to a conserved quantity by writing the flux as the density times the velocity (this

defines the velocity). In the current example, it follows from (2.9) that

u =
}
m
θx is the probability density flow velocity. (2.10)

Introduce now ρ = mρ̃, so that ρ is the “mass probability distribution function” (with mass per unit length units).

Then rewrite (2.6–2.7) in the form (see “Details” below)

ρt + (ρ u)x = 0, (2.11)

(ρ u)t + (ρ u2 + p)x = −ρ̃ Vx, (2.12)

where p =
}2

2m2

(
R2
x −RRxx

)
= − }2

2m2
(lnR)xx = − }2

4m2
(ln ρ)xx and R =

√
ρ.

Except for the strange form of the pressure, this is the same as the isentropic Euler equations of Gas Dynamics, with
a probability-weighted body force F = −ρ̃ Vx.
1–This analogy was noted by E. Madelung: Quantentheorie in Hydrodynamischen form. Z. Phys. 40:322-326 (1926).

2–In classical mechanics the force −Vx is applied to the particle, at the particle location. Here the force is applied

to the whole mass pdf, weighted by the position pdf.

Note also that, according to QM, the expected value of the particle momentum is −i }
∫
ψ∗ ψx dx. This also has a

fluid dynamic analog, since −i }
∫
ψ∗ ψx dx =

∫
ρ u dx = total momentum.

Details: (2.11) is the same as (2.8). To obtain (2.12), multiply (2.7) by 1
mr

, and next differentiate with respect to x. This

leads to
ut + uux − }2

2m2

(rxx
r

)
x

= − 1

m
Vx.

Then multiply by ρ. Upon use of (2.11), it is easy to see that this yields (2.12).

3 Dispersive Waves and Modulation

3.1 Statement: Dispersive Waves and Modulation

Consider the following linear partial differential equations for the scalar function u = u(x, t):

ut + c ux + duxxx = 0, (3.1)

utt − uxx + au = 0, (3.2)

i ut + b u+ g uxx = 0, (3.3)

where the equations are written in a-dimensional variables, (c, d, a, b, g) are real constants, and a > 0. These

equations arise in many applications, but we will not be concerned with them here. It should be clear that, in all three

cases,
u = Aei (k x−ω t+θ0), where ω = Ω(k), (3.4)

is a solution of the equations, for any real constants A > 0, θ0, k, and ω, provided that
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M1. For equation (3.1): Ω(k) = c k − d k3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Verify that this is true.

M2. For equation (3.2): Ω(k) = ±
√
a+ k2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Verify that this is true.

M3. For equation (3.3): Ω(k) = −b+ g k2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Verify that this is true.

Note that the general solution to the equations can be written as a linear combination of solutions of this type, via Fourier

Series and Fourier Transforms — we will see this later in the semester.

Remark 3.1 Solutions such as that in (3.4) represent monochromatic sinusoidal traveling waves, with amplitude

A, phase θ = k x− ω t+ θ0, wave number k, and angular frequency ω. The wave length and wave period

are λ = 2π/k and τ = 2π/ω, respectively. The wave profile’s crests and troughs move at the speed given by θ =

constant, namely: the phase speed cp = ω/k. ♣

Remark 3.2 In all three cases, Ω = Ω(k) is a real valued function of k, with d2Ω
dk2 6= 0 — i.e.: Ω is not a linear

function of k. Because of this, we say that the equations are dispersive and call Ω the dispersion function. The

(non-constant) velocity cg = cg(k) = dω/dk is called the group speed, and the objective of this problem is to find

out what the meaning of cg is.

The reason for the name “dispersive” is as follows: In a dispersive system, waves with different wavelengths propagate

at different speeds. Thus, a localized initial disturbance, made up of many modes of different wavelengths, will disperse

in time, as the waves cease to add up in the proper phases to guarantee a localized solution. This is because localization

depends on destructive interference, outside some small region, of all the modes a(k) ei (k x+θ0) making up the initial

disturbance. However, since these modes propagate at different speeds, the phase coherence needed for destructive

interference is destroyed by the time evolution. This phenomena is illustrated in figure 3.1. ♣

−4 −3 −2 −1 0 1 2 3 4

−1

0

1

2

3

4

5

 u 

 Dispersion by ω = ± k2.

 x

 t = 0.00 black
 t = 0.25 red
 t = 0.50 blue

Figure 3.1: Example of dispersion: initial “Gaussian” bump, as it evolves under a dispersive equation with Ω(k) = ±k2

— i.e.: utt + uxxxx = 0. The solution at times t = 0, 1/4, 1/2 displayed. As the initial lump’s phase coherence

is destroyed by dispersion, localization is lost, and the bump “disperses”. The solution u = u(x, t) is given by the

Fourier integral u = Re
(∫∞
−∞ a(k)ei(k x−k

2 t)dk
)

, where a(k) = e−k
2/9.

The tasks to be performed

TASK 1. verify M1 through M3, above below equation (3.4).
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TASK 2: Consider a dispersive waves system, that is: a system of equations accepting monochromatic traveling

waves as solutions, provided that their wave number k and angular frequency ω are related by a dispersion relation

ω = Ω(k). (3.5)

Consider now a slowly varying, nearly monochromatic solution of the system. To be more precise: consider a solution

such that at each point in space–time one can associate a local wave number k = k(x, t) and a local angular frequency

ω = ω(x, t). In particular, assume that both k and ω vary slowly in space and time, so that they change very little

over a few wavelengths or a few wave periods — on the other hand, they may change considerably over many wave

lengths or wave periods. Then

Assuming conservation of wave crests, derive equations governing k and ω.

These equations are called the Wave Modulation Equations.

Remark 3.3 The assumption that k and ω vary slowly is fundamental in making sense of the notion of a locally

monochromatic wave. To even define a wave number or an angular frequency, the wave must look approximately

monochromatic over several wavelengths and periods. ♣

Remark 3.4 Why is it reasonable to assume that the wave crests are conserved? The idea behind this is that,

for a wave crest to disappear (or for a new wave crest to appear), something pretty drastic has to happen in the wave

field. This is not compatible with the assumption of slow variation. It does not mean that it cannot happen, just that

it will happen in circumstances where the assumption of slow variation is invalid. There are some pretty interesting

research problems in pattern formation that are related to this point. ♣

Hint 3.1 It should be clear that one of the equations is ω = Ω(k), since the solution behaves locally like a monochro-

matic wave (this is the “quasi-equilibrium” approximation in this context). For the second equation, express the density

of wave crests (and its flux) in terms of k and ω. To figure this out, think of the following questions (i) How many

wave crests are there per unit length for a sinusoidal wave? (ii) How many wave crests pass through a fixed point in

space, per unit time, for a sinusoidal wave? Then write the equation for the conservation of wave crests using these

quantities. ♣

3.2 Answer: Dispersive Waves and Modulation

The wavelength is related to the wave number by λ = λ(x, t) = 2π/k, while for the wave period τ we have

τ = τ (x, t) = 2π/ω. Thus:

M4. 1
λ

= 1
2π
k is the number of waves per unit length = wave crest density.

M5. 1
τ

= 1
2π
ω is the number of waves per unit time = wave crest flux.

Hence, if the waves are conserved, we can write the conservation of wave crests equation:

kt + ωx = 0, (3.6)

where ω = Ω(k), and we have eliminated the common 2π factor.

Remark 3.5 The wave’s crests move at the phase speed: cp = cp(k) = ω/k = Ω(k)/k.

This is easy to see by noticing that we can write

exp{i (k x− ω t)} = exp{i k (x− cp t)} in (3.4). Since ω = cp k, this velocity plays in this theory the same role as the

car speed in Traffic Flow. ♣

Remark 3.6 Substituting ω = Ω(k) into equation (3.6), and using the chain rule, we obtain:

kt + cg(k) kx = 0, (3.7)

where cg = dΩ/dk is the group speed. Clearly, cg plays the same role here as the characteristic wave speed does in

Traffic Flow. Changes in k and ω travel at this speed. In particular, a “wave package” travels at this speed. It can

also be shown that cg is the speed at which the wave energy propagates. ♣
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Remark 3.7 You may have encountered the notion of group speed in earlier courses, when studying the beating

phenomena. Namely, adding two sinusoidal waves of close frequency and wavelength:

Φ = cos(k1 x− ω1 t) + cos(k2 x− ω2 t), (3.8)

where k1 ≈ k2 and ω1 ≈ ω2, produces “beats” propagating at a velocity
∆ω

∆k
≈ cg = group speed.

This follows because we can write

Φ = 2 cos

(
k1 − k2

2
x− ω1 − ω2

2
t

)
cos

(
k1 + k2

2
x− ω1 + ω2

2
t

)
= 2 cos

(
∆k

2
x− ∆ω

2
t

)
cos
(
k̄ x− ω̄ t

)
, (3.9)

where k̄ and ω̄ are the average wave number and angular frequency. This is the simplest example of a slowly modulated

wave: The amplitude modulation is provided by the 2 cos((∆k x−∆ω t)/2) factor, while the wave number k̄, and wave

frequency ω̄ remain constant. ♣

Remark 3.8 Where is the fact that k and ω vary “slowly” in space and time used?

1. So that we can talk about a wavelength and a frequency for the waves. For these things to make sense the wave

must (locally) look like a plane wave — with a k and a ω that are (essentially) constant over a few wavelengths

or wave periods.

2. To write ω = Ω(k) for the variables k and ω. This is the relationship that applies to plane, monochromatic

waves — where k and ω are constants. Thus, to be (approximately) valid in the variable case, the changes in

k and ω must be small over a few wave periods or wavelengths. ♣

4 Fundamental Diagram of Traffic Flow #01

4.1 Statement: Fundamental Diagram of Traffic Flow #01

The desired car velocity u = U(ρ) has its maximum, um, at ρ = 0, and vanishes at the jamming density, ρJ . Assuming

that U is a linear function of ρ, write a formula for the flow rate q = Q(ρ). What is the road capacity qm? What is

the wave velocity c = c(ρ)?

4.2 Answer: Fundamental Diagram of Traffic Flow #01

From the stated assumptions

U = um

(
1− ρ

ρJ

)
. (4.1)

Hence, from q = ρ u, it follows that

Q = um ρ

(
1− ρ

ρJ

)
=⇒ qm =

1

2
ρJ um. (4.2)

Furthermore

c =
dq

dρ
= um

(
1− 2

ρ

ρJ

)
. (4.3)
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5 Fundamental Diagram of Traffic Flow #03

5.1 Statement: Fundamental Diagram of Traffic Flow #03

Many state laws state that: for each 10 mph (16 kph) of speed you should stay at least one car length behind the car

in front. Assuming that people obey this law “literally” (i.e. they use exactly one car length), determine the density

of cars as a function of speed (assume that the average length of a car is 16 ft (5 m)). There is another law that

gives a maximum speed limit (assume that this is 50 mph (80 kph)). Find the flow of cars as a function of density,

q = q(ρ), that results from these two laws.

The state laws on following distances stated in the prior paragraph were developed in order to prescribe a spacing

between cars such that rear-end collisions could be avoided, as follows:

a. Assume that a car stops instantaneously. How far would the car following it travel if moving at u mph and

a1. The driver’s reaction time is τ , and

a2. After a delay τ , the car slows down at a constant maximum deceleration α.

b. The calculation in part a may seem somewhat conservative, since cars rarely stop instantaneously. Instead,

assume that the first car also decelerates at the same maximum rate α, but the driver in the following car still

takes a time τ to react. How far back does a car have to be, traveling at u mph, in order to prevent a rear-end

collision?

c. Show that the law described in the first paragraph of this problem corresponds to part b, if the human reaction

time is about 1 sec. and the length of a car is about 16 ft (5 m).

Note: What part c is asking you to do is to justify/derive the state law prescription, using the calculations in part

b to arrive at the minimum car-to-car separation needed to avoid a collision when the cars are forced to brake.

5.2 Answer: Fundamental Diagram of Traffic Flow #03

Assume that the drivers follow the state law prescription exactly. Then 5 d =
Lu

V
, (5.1)

where d is the distance to the next car, L is the car length, u is the car

velocity and V is the law “trigger” velocity, as in:

State Law: Maintain a distance of one car length for each V increase in velocity.

Typical numbers are V = 10 mph = 16 kph and L = 16 ft = 5 m.

Since we then end up with one car for every d+ L distance, equation (5.1) above leads to the velocity–density

relationship
1

ρ
= L+ d = L

(
1 +

u

V

)
or u =

(
1

ρL
− 1

)
V . (5.2)

Thus the car flux is given by q = u ρ =

(
1

L
− ρ
)
V =⇒ c =

dq

dρ
= −V . (5.3)

This gives a constant wave speed c, and a

car velocity that goes to infinity as the density vanishes. This because we have not yet enforced the speed limit,

which yields
u = min

{
um,

(
1

ρL
− 1

)
V

}
and q = min

{
ρ um,

(
1

L
− ρ
)
V

}
, (5.4)

where um = speed limit. The critical density below which u = um, is ρc =
V

L (V + uM )
. (5.5)

Then (5.2 – 5.3) applies for ρ ≥ ρc. Then, if u < um we can recover

ρ > ρc from (5.2 – 5.3). On the other hand, u = um for any ρ ≤ ρc.

Next we motivate the state laws by a simple calculation involving two facts: (i) Drivers have a finite reaction time,

τ > 0. (ii) Cars do not change velocity instantaneously, but do so with a finite deceleration α > 0. To simplify

matters, here we assume that τ is the same for all the drivers, and that α is constant (and the same for all cars).

5To understand this note that d/L is the number of car lengths of separation, while u/V is the number of “trigger” velocities.
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Imagine now two cars, one behind the other, traveling at the same (constant) speed u. At some point, the car ahead

(car #1) starts braking. It then travels a distance

D1 =
1

2

u2

α
(5.6)

from the moment the brakes are applied to the moment it stops. On the other hand, the distance traveled by the car

behind (car #2) from the moment the driver sees that he must stop 6 till the car actually stops, includes the driver’s

reaction time. That is

D2 = u τ +
1

2

u2

α
. (5.7)

It then follows that, in order to avoid a rear end collision, the distance between two cars traveling at speed u must

be at least u τ . This yields the following formula for the “trigger” velocity

V =
L

τ
. (5.8)

In particular, L = 16 ft and τ = 1 s yields V = 16 ft/s = 10.9 mph — note that 1 mile = 5280 ft and 1 hr = 3600 s.

This trigger velocity is pretty close to the one used in many state laws.

Note: The calculation above is a bit sloppy, for it only checks that car #2 is still behind car #1 once they stop.

What one should check is that car #2 stays behind car #1 at all times. However car #2 is always moving at a speed

equal to or greater than that of car #1. This because it starts slowing down, at the same rate and starting from the

same speed, later. Thus the distance between the two cars is a non-increasing function of time. It follows that it is

enough to check that it is positive once they stop, to know that it was always positive.

6 ExID03. Single variable implicit differentiation

6.1 Statement: Single variable implicit differentiation

In each case compute y′ =
dy

dp
as a function of y and p, given that y = y(p) satisfies:

1. p3 + p y + 2 = 0. 2. y = sin(y + p). 3. ln(y) = p.

4. cos2(y) = p, for p > 0. 5. y = f(c− y p). 6. y = f(p− c y).

Note: in (5) and (6) f is an arbitrary function, and c is a constant.

6.2 Answer: Single variable implicit differentiation

1. p3 + py + 2 = 0 implies: 3p2 + y + p
dy

dp
= 0. Thus

dy

dp
= −3p2 + y

p
.

2. y = sin(y + p) implies:
dy

dp
=

(
dy

dp
+ 1

)
cos(y + p). Thus

dy

dp
=

cos(y + p)

1− cos(y + p)
.

3. ln(y) = p implies:
dy

dp

1

y
= 1. Thus

dy

dp
= y.

4. cos2(y) = p, for p > 0 implies: −2 cos y sin y
dy

dp
= 1. Thus

dy

dp
= − 1

sin(2 y)
.

6 Say, the brake lights for the car ahead turn on.
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5. y = f(c− y p), where f is an arbitrary function and c is a constant implies:

dy

dp
= −f ′(c− y p)

(
p
dy

dp
+ y

)
. Thus

dy

dp
= − y f ′(c− y p)

1 + p f ′(c− y p)
.

6. y = f(p− c y), where f is an arbitrary function and c is a constant implies:

dy

dp
= f ′(p− c y)

(
1− c dy

dp

)
. Thus

dy

dp
=

f ′(p− c y)

1 + c f ′(p− c y)
.

7 ExID14. Two variable implicit differentiation

7.1 Statement: Two variable implicit differentiation

In each case compute ux =
∂u

∂x
and up =

∂u

∂p
(as functions of u, x, and p), given that u = u(x, p) satisfies:

1. cos(p2 u) = p e−x
2

. 2. p = cos(x+ u). 3. u = p f(x+ u).

Note: In (3) f is an arbitrary function of a single variable, f = f(ζ).

7.2 Answer: Two variable implicit differentiation

1. Upon taking partial derivatives with respect to x and p, cos(p2 u) = p e−x
2

yields:

p2 ux sin(p2 u) = 2x p e−x
2

and (2 p u+ p2 up) sin(p2 u) = −e−x
2

.

Thus: ux =
2x p e−x

2

p2 sin(p2 u)
and up = −2 p u sin(p2 u) + e−x

2

p2 sin(p2 u)
.

2. Upon taking partial derivatives with respect to x and p, p = cos(x+ u) yields:

0 = (1 + ux) sin(x+ u) and 1 = −up sin(x+ u).

Thus: ux = −1 and up = − 1

sin(x+ u)
.

3. Upon taking partial derivatives with respect to x and p, u = p f(x+ u) yields:

ux = (1 + ux) p f ′(x+ u) and up = f(x+ u) + p up f
′(x+ u).

Thus: ux =
p f ′(x+ u)

1− p f ′(x+ u)
and up =

f(x+ u)

1− p f ′(x+ u)
.

8 ExID42. Differentiation within integrals

8.1 Statement: Differentiation within integrals

In each case compute ux =
∂u

∂x
and up =

∂u

∂p
(as functions of u, x, and p), given that u = u(x, p) satisfies:

1. p =

∫ u

0

exp
(
p sin(s) + x s2

)
ds.
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2. u =

∫ x

0

sin
(
p u(s2, s) + x s

)
ds.

3. p =

∫ u

x

cos
(
p sin(s) + x s2

)
ds.

8.2 Answer: Differentiation within integrals

In each case take partial derivatives of the expressions satisfied by u, and then solve to obtain formulas for ux and

up.

1. 1 = exp
(
p sin(u) + xu2

)
up +

∫ u

0

exp
(
p sin(s) + x s2

)
sin(s) ds,

so that . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . up =

1−
∫ u

0

exp
(
p sin(s) + x s2

)
sin(s) ds

exp (p sin(u) + xu2)
.

0 = exp
(
p sin(u) + xu2

)
ux +

∫ u

0

exp
(
p sin(s) + x s2

)
s2 ds,

so that . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ux = −

∫ u

0

exp
(
p sin(s) + x s2

)
s2 ds

exp (p sin(u) + xu2)
.

2. Clearly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . up =

∫ x

0

u(s2, s) cos
(
pu(s2, s) + x s

)
ds,

and . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ux = sin
(
pu(x2, x) + x2

)
+

∫ x

0

s cos
(
pu(s2, s) + x s

)
ds

3. 1 = cos
(
p sin(u) + xu2

)
up −

∫ u

x

sin(s) sin
(
p sin(s) + x s2

)
ds,

so that . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . up =

∫ u

x

sin(s) sin
(
p sin(s) + x s2

)
ds

cos (p sin(u) + xu2)
.

0 = cos
(
p sin(u) + xu2

)
ux − cos

(
p sin(x) + x3

)
−
∫ u

x

sin
(
p sin(s) + x s2

)
s2 ds,

so that . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ux =

cos
(
p sin(x) + x3

)
+

∫ u

x

sin
(
p sin(s) + x s2

)
s2 ds

cos (p sin(u) + xu2)
.
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9 ExID56. Directional derivatives and Taylor

9.1 Statement: Directional derivatives and Taylor

Do the tasks stated in items 1 and 2 below

1. Let Γ be a curve in the plane, ~r = (x, y), parameterized by arc-length: x = X(s) and y = Y (s). Assume

that dY
ds

< 0 along the curve, and that the curve is tangent to the unit circle for s = 0, at the point

(x, y) = (1/
√

2, 1/
√

2).

Calculate dΦ
ds

at s = 0, along the curve Γ, for Φ = sin

(
π
√

2
x+ π y2

)
.

Correct answer required. “I only missed a sign”, or similar, excuses not allowed. Check your answer!

2. Let Γ be the straight line in the plane, ~r = (x, y), given by x = 1 + t and y = t, −∞ < t <∞. Let Φ = Φ(~r)

be some smooth scalar function. Define f = f(t) by f = Φ along Γ.

Write the first three terms of the Taylor expansion for f at t = 0, in terms of the partial derivatives of Φ at

~r0 = (1, 0). In particular, compute ḟ(0) and f̈(0) for Φ = x2 ey.

9.2 Answer: Directional derivatives and Taylor

We have

1. At s = 0, d~r
ds

along Γ must be a unit tangent vector to the unit circle at ~r = (1/
√

2, 1/
√

2). That is

either (i)
d~r

ds
= (1/

√
2, −1/

√
2) = t̂1 or (ii)

d~r

ds
= (−1/

√
2, 1/

√
2) = t̂2.

However, since dY
ds
< 0, it must be (i). Thus, at s = 0,

dΦ

ds
=
d~r

ds
· ∇Φ =

1√
2

Φx

(
1√
2
,

1√
2

)
− 1√

2
Φy

(
1√
2
,

1√
2

)
= −π

2
cos(π) =

π

2
. (9.1)

2. The tangent vector to Γ is
d~r

dt
= (1, 1) = ~t. Thus

f = Φ0 + t
((
~t · ∇

)
Φ
)
0

+
1

2
t2
((
~t · ∇

)2
Φ
)
0

+ . . .

= Φ0 + t (Φx + Φy)0 +
1

2
t2 (Φxx + 2 Φxy + Φyy)0 + . . . (9.2)

where the subscript zero indicates evaluation at ~r0. In particular, if Φ = x2 ey,

f = 1 + 3 t+
7

2
t2 + . . . (9.3)

so that ḟ(0) = 3 and f̈(0) = 7.

10 ExID61. Direct Taylor expansions

10.1 Statement: Direct Taylor expansions

For the examples below, calculate the Taylor expansion up to the order indicated (e.g.: cos(x) = 1− 1
2 x

2 +O(x4)).

Do not use a calculator to evaluate constants that appear in the expansions — e.g.,
√

2/π or cos(3). On the other

hand, do simplify when possible — e.g., tan(π/4) = 1 or 2/
√

2 =
√

2.
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1. Expand, up to O(x4), f(x) = sin(x) cos(
√
x).

2. Expand, up to O(x5), f(x) = sin(1 + x).

3. Expand, up to O(x5), f(x) = sin(1 + x+ x3).

4. Let G = G(x, y) be some smooth7 function of two variables. For z ≥ 0, expand up to O(z3), f(z) = G(z, z1.5).

Express the expansion coefficients in terms of partial derivatives of G.

10.2 Answer: Direct Taylor expansions

We have

1. f(x) =

(
x− 1

6
x3 +O(x5)

) (
1− 1

2
x+

1

24
x2 +O(x3)

)
= x− 1

2
x2 − 1

8
x3 +O(x4).

2. f(x) = sin(1) + cos(1)x− 1

2
sin(1)x2 − 1

6
cos(1)x3 +

1

24
sin(1)x4 +O(x5).

3. Using the answer to part 2, we get
f(x) = sin(1) + cos(1) (x+ x3)− 1

2 sin(1) (x2 + 2x4 +O(x6))−
1
6 cos(1) (x3 +O(x5)) + 1

24 sin(1) (x4 +O(x6)) +O(x5)

= sin(1) + cos(1)x− 1
2 sin(1)x2 + 5

6 cos(1)x3 − 23
24 sin(1)x4 +O(x5).

4. We have G(x, y) = G0 +G0
x x+G0

y y + 1
2 G

0
x x x

2 +G0
x y x y + 1

2 G
0
y y y

2 +O
(
(x2 + y2)1.5

)
,

where: The superscript 0 denotes evaluation at (0, 0) — e.g., G0 = G(0, 0), etc.

The subscripts denote partial derivatives — e.g., Gx = ∂G
∂x , etc.

Thus f(z) = G0 +G0
x z +G0

y z
1.5 +

1

2
G0
x x z

2 +G0
x y z

2.5 +O(z3).

11 ExID71. Change of variables for an ode

11.1 Statement: Change of variables for an ode

Consider the second order, nonlinear, ode

x2 cosw
d2w

dx2
− x2 sinw

(
dw

dx

)2

+ x cosw
dw

dx
+ sinw = 0 (11.1)

for w = w(x), where x > 0. Rewrite it in terms of u = u(y), where u = sinw and y = lnx.

11.2 Answer: Change of variables for an ode

From the relationship between y and x, and the chain rule, it follows that
d

dy
= x

d

dx
.

Hence

du

dy
= x cosw

dw

dx
, (11.2)

d2u

dy2
= x cosw

dw

dx
− x2 sinw

(
dw

dx

)2

+ x2 cosw
d2w

dx2
, (11.3)

7The partial derivatives of f , to any order, exist and are continuous
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where the second equation follows from expanding
d2u

dy2
= x

d

dx

(
x cosw

dw

dx

)
. Equation (11.2) could be used to

write dw
dx in terms of dudy . Then (11.3) would yield d2w

dx2 in terms of dudy and d2u
dy2 . Finally, these expressions, substituted

into (11.1), would produce the final answer. However, here it is easy to see directly from (11.3) that the transformed

equation is
d2u

dy2
+ u = 0. (11.4)

12 ExID77. Change of variables for a pde

12.1 Statement: Change of variables for a pde

Let u = u(x, t) be a solution of the heat ut = uxx. (12.1)

What equation does φ = − 1
u ux satisfy?

Hint. Calculate φt and use the equation for u. Calculate φx and write it in terms of u, uxx, and φ2. Then compute

φxx. You should now be able to write φt in terms of φ, φx, and φxx.

12.2 Answer: Change of variables for a pde

We have

φt = − 1
u uxt + 1

u2 ux ut = − 1
u uxxx + 1

u2 ux uxx, where we have used (12.1).

φx = − 1
u uxx + φ2.

φxx = − 1
u uxxx + 1

u2 ux uxx + (φ2)x.

Thus φ satisfies φt + (φ2)x = φxx. (12.2)

THE END.


