
Notes: von Neumann Stability Analysis

R. R. Rosales (MIT, Math. Dept., room 2-337, Cambridge, MA 02139)

April 26, 2022

Contents

1 von Neumann Stability Analysis for Numerical Schemes 1

1.1 Example: the “good” scheme from the lectures . 2

Restriction on the wave number: −π < κ ≤ π . 2

General solution of the scheme equations as a linear combination of

the normal modes obtained using the von Neumann ansatz 3

It is generally a good idea to kill the high frequencies . 3

1.1.1 Further considerations regarding stability . 4

1.1.2 von Neumann normal modes and consistency . 5

1.1.3 The CFL (Courant-Friedrichs-Lewy) condition . 5

1.2 Example: implicit forward differences for ut + ux = 0 . 6

Order of a scheme, and checking consistency . 6

Implicit versus explicit schemes . 6

Something unusual about this scheme . 7

It is generally a good idea to kill the high frequencies . 7

MatLab implementation . 7

1.3 Not yet written. Example: backward differences for ut + ux = u . 7

List of Figures

1 von Neumann Stability Analysis for Numerical Schemes

A von Neumann stability analysis can be carried out for constant coefficients linear finite differences schemes

only. It is based on the fact that (for this class of schemes) the general solution to the scheme equations can be found

as a linear combination of the special solutions found by separation of variables. This works because:

A. For linear schemes, linear combination of solutions are solutions.

B. If the scheme coefficients are constant (independent of the indexes), exponential and power dependencies on

the indexes factor out, leaving algebraic equations for the parameters.

These are the same reasons that allow the solution of linear constant coefficients differential equations using expo-

nential functions.

The limitation to constant coefficients linear equations is not as restrictive as it might seem. One can often get

information on the behavior of schemes where these conditions do not apply (e.g: either non-linear or non-constant

coefficients situations) by doing a von Neumann stability analysis on a “frozen” coefficients version of the schemes

(this can be tricky, so we will not go into this now).

Note 1.1 For a more mathematically rigorous presentation of the meaning of consistency and stability for numerical

schemes, see the section on Convergence of numerical schemes in Various lecture notes for 18311. The presentation

here is at an informal level. ♣

1

18.300 MIT, (Rosales) Notes: vNSA von Neumann Stability Analysis. 2

1.1 Example: the “good” scheme from the lectures

Here we show an example of a von Neumann stability analysis, to illustrate the idea. We pick the “good” scheme

used in the GBNS lecture script in the 18.311 MatLab Toolkit. The aim of this scheme is to solve the wave equation,

written as the system of equations:

ut = v and vt = ux x, (1.1)

where the subscripts indicate partial derivatives and the equations are written using nondimensional variables (thus

the wave speed is c = 1).

Description of the scheme.

Consider a uniform grid in space and time {(xn, tm)}, with grid spacings ∆x and ∆t (assumed “small”). That

is xn+1 = xn + ∆x and tm+1 = tm + ∆t. On this grid we assume that the solution is approximated by the grid

functions umn and vmn . That is:

u(xn, tm) ≈ umn and v(xn, tm) ≈ vmn , (1.2)

where the grid functions satisfy the following discretized version of equations (1.1) (the “good” numerical scheme):

um+1
n − umn

∆t
= vmn +

1

2
δ∆t

umn+1 − 2umn + umn−1

(∆x)2
, (1.3)

vm+1
n − vmn

∆t
=

umn+1 − 2umn + umn−1

(∆x)2
+

1

2
δ∆t

vmn+1 − 2vmn + vmn−1

(∆x)2
, (1.4)

where δ > 1 is a constant (for δ = 2 this is the “good” scheme in the GBNS lecture script script of the 18.311 MatLab

Toolkit). The reason for the condition δ > 1 is stability, as shown below.

Equations (1.3 –1.4) are obtained by adding a small amount of numerical viscosity 1 to the intuitive (but naive)

discretization used in the “bad” scheme of the GBNS lecture script in the 18.311 MatLab Toolkit. Namely:

um+1
n − umn

∆t
= vmn and

vm+1
n − vmn

∆t
=
umn+1 − 2umn + umn−1

(∆x)2
. (1.5)

Note that, to get a consistent scheme the extra terms added in (1.3–1.4) must vanish as ∆t and ∆x do. Hence we

require δ∆t� 1. In other words: Do not take δ too large, or problems can arise.

Normal modes for the scheme.

We look now for solutions of the form umn = U Gm eiκn and vmn = V Gm eiκn, (1.6)

for the scheme equations in (1.3 – 1.4). Here U and V are constants, G is the growth factor and −π < κ ≤ π is

the grid wave number.

Remark 1.1 The restriction −π < κ ≤ π follows because the terms eiκn — above, in (1.6) — are periodic in κ, of

period 2π. Thus there is no point in using values of κ outside of a 2π range — though, some times it is convenient

to restrict the range by 0 ≤ κ < 2π.

Note that, for κ = p/q a rational number, the solution above is periodic, of period q in n. ♣

Substituting (1.6) into (1.3 – 1.4), we obtain the equations:

GU =
(
1− 2 δ λ2 sin2(κ/2)

)
U + ∆t V ,

GV = −4λ2

∆t
sin2(κ/2)U +

(
1− 2 δ λ2 sin2(κ/2)

)
V ,

 (1.7)

1 For a motivation, see the introduction to the AENS (Associated Equation to a Numerical Scheme) set of problems. Equations (1.3 –1.4)

mimic the system ut = v + 1
2
δ∆t ux x and vt = ux x + 1

2
δ∆t vx x.

18.300 MIT, (Rosales) Notes: vNSA von Neumann Stability Analysis. 3

where λ =
∆t

∆x
, and we have used that eiκ − 2 + e−iκ = −4 sin(κ/2).

This is an eigenvalue problem, with eigenvalue G given by

G = 1− 2 δ λ2 sin2(κ/2)± 2 i λ sin(κ/2). (1.8)

In particular |G|2 =
(
1− 2 δ λ2 sin2(κ/2)

)2
+ 4λ2 sin2(κ/2)

= 1− 4 (δ − 1) sin2(κ/2)λ2 + 4 δ2 sin4(κ/2)λ4. (1.9)

The general solution to the scheme equations (1.3–1.4) can be written as a linear combination of the normal

modes (1.6 – 1.8). In order for the scheme to behave appropriately, none of these modes should grow (otherwise

numerical errors are amplified). Thus we need |G| ≤ 1, which leads to

Stability conditions are conditions that guarantee |G| ≤ 1 for all κ. (1.10)

As we show below — see (1.14) — this is possible provided that λ and δ are restricted appropriately. In fact, we

want more (consistency):

The restrictions for stability should allow ∆t→ 0, ∆x→ 0, and δ∆t→ 0

— so that the scheme equations in (1.3 – 1.4) approach the pde in (1.1).
(1.11)

This is also allowed by (1.14).

Implementation of the stability condition (1.10).

For any fixed κ, (1.9) expresses |G|2 as a a quadratic polynomial in λ2. It follows that |G|2 ≤ 1 if and only if 2

δ > 1 and λ2 ≤ δ − 1

δ2 sin2(κ/2)
. (1.12)

Thus the stability conditions for the scheme in (1.3 – 1.4), obtained by requiring that (1.12) hold for all the possible

values of κ, are: δ > 1 and λ2 ≤ (δ − 1)/δ2. However (see note 1.3)

It is always a good idea to have any “high frequency” (grid scale) oscillations,

killed by the algorithm. This means that we want |G| < 1 for κ away from

zero, and particularly near κ = π.

(1.13)

Thus, finally, we arrive at the stability conditions:

δ > 1 and λ <

√
δ − 1

δ
, which yield |G| < 1 for κ 6= 0. (1.14)

Of course, G(0) = 1, so that |G(0)| = 1.

Note 1.2 It is, generally, desirable for a numerical scheme to preserve the equilibrium solutions for the equation. In

this case this means that we want umn = constant and vmn = 0 to be solutions of the scheme. This requirement forces

G(0) = 1, and it is not guaranteed by consistency. ♣

Note 1.3 Generally, a situation where |G| ≡ 1 is not desirable, unless G = Ge = exact growth factor 3 — for more

on Ge, see § 1.1.2.

The reason is that then modes with κ away from zero (“high frequencies”) will be evolved incorrectly, without being

killed. For solutions with a substantial amount of high frequencies (e.g.: the initial conditions have discontinuities or

singularities of some type) this leads to oscillations that appear in the numerical solution, as the modes loose coherence.

An example of this is provided in problems vNSA01h and vNSA04h (Crank-Nicolson scheme for ut ± ux = 0).

2 Assume λ > 0, since λ = 0 is useless. Then note that: (i) δ ≤ 1 yields |G2| > 1 in (1.9). (ii) For δ > 1 the polynomial in (1.9) is below 1

for small λ2, and crosses above 1 for λ2 > (δ − 1)/(δ2 sin2(κ/2)).
3 Of course, G = Ge is something that can only be achieved for very simple equations, such as ut + ux = 0.

18.300 MIT, (Rosales) Notes: vNSA von Neumann Stability Analysis. 4

1.1.1 Further considerations regarding stability

The restriction |G| ≤ 1 for all κ in (1.10) is a bit of an over-kill in terms of stability, though for the equation in (1.1)

this is fine — even desirable, as demonstrated by (1.13 – 1.14). However, there are situations where one cannot use

(1.10), as explained in item (c) below. Let us now examine the issue of stability in more detail.

(a) Consistency (see § 1.1.2) guarantees that the normal modes with small grid number κ = O(∆x) are treated

correctly by the scheme. 4 It is the normal modes with κ away from zero that must be kept under control (no

growth), since for these modes the scheme cannot be accurate: Finite differences are not accurate approximations

of the partial derivatives for functions that vary too rapidly relative to the grid scales ∆x and ∆t.

(b) A less restrictive, but technically more complicated, definition of stability 5 is that the solutions provided by

the numerical scheme (for fixed initial conditions) should remain bounded on any fixed time interval 0 ≤ tm ≤ T ,

as ∆t→ 0. In terms of the growth factor G, this translates to

|G|m ≤ f(tm) for all m, ∆t and κ, (1.15)

where f = f(t) is a continuous function which does not depend on neither ∆t or ∆x. Clearly (1.10) is the

special example of this corresponding to the simple choice f ≡ 1. See item (c) for another example.

Typically G is a function of κ, ∆x, ∆t, and any parameters in the scheme (such as δ in the current case). In

order to prevent errors in the calculation from growing, it is necessary that |G| ≤ 1 apply — or, more generally,

(1.15).
If (with suitable restrictions on the scheme parameters, ∆x, and

∆t) this can be achieved, then we say that the scheme is stable.
(1.16)

A scheme will be useful if we can do this, while simultaneously letting the scheme equations become better

and better approximations to the equations that we want to solve (consistency can be implemented). This

requires that the stability restrictions allow ∆x and ∆t to vanish, but may also impose restrictions on the

scheme parameters — e.g.: δ∆t→ 0 in (1.11).

For some schemes, such as the ”bad” scheme of the GBNS lecture script in the 18.311 MatLab Toolkit, (1.16)

is impossible. Such schemes are called unstable. An unstable scheme is useless, because it cannot keep the

errors under control, which grow till they overwhelm the solution.

(c) When the solutions of the pde the scheme aims to solve are bounded — e.g.: (1.1), then it is reasonable to

require |G| ≤ 1 for stability, as in (1.10). However, when this is not true, the definition in (1.15 – 1.16) must

be used.

For example, consider (see § 1.3) the equation ut + ux = u. In this case the solutions, u = et f(x− t), grow

exponentially. Hence a restriction of the form |G| ≤ 1 would be unreasonable for a numerical scheme. The

appropriate thing here is to require (1.15) with f an exponential, which occurs if we require

|G| ≤ 1 + a∆t, for some constant a > 0. (1.17)

This guarantees (1.15), because ln(1 + a∆t) ≤ a∆t, so that |G|m ≤ ema∆t = ea tm .

A final point regarding the example in item (c) above: it may seem that allowing the errors to grow like ea t, with

(possibly) a > 1 would create a problem when the solution itself grows at a rate et. This is true, however, only if we

want to calculate the solution for a very long time. 6 For a “finite” time, since the errors “start” small, this is not

a show-stopper for convergence. Nevertheless, it is always desirable — see (1.13) — to have the values of κ away

from zero (particularly the high frequencies) killed, since these cannot be computed accurately by the scheme (any

scheme).

4 For κ = α∆x, ei κ n = ei α (xn−x0). Thus umn and vmn in (1.6) follow from smooth functions of x evaluated on the grid, for which

approximating derivatives via finite differences makes sense.
5 See the section on Convergence of numerical schemes in Various lecture notes for 18311.
6 Which is, generally, not easy to do accurately — particularly if the solutions grow in amplitude.

18.300 MIT, (Rosales) Notes: vNSA von Neumann Stability Analysis. 5

1.1.2 von Neumann normal modes and consistency

For a constant coefficients linear pde, a Fourier mode in space (i.e.: space dependence via an exponential ei k x) has

an associated time dependence of the form eµ t, where µ = µ(k) is a function of the wave number k — when µ = −i ω
is purely imaginary, ω is called the wave frequency. When these Fourier modes are evaluated on the numerical grid,

as in equation (1.2), they give rise to a dependence on the grid indexes of the form

umn ∝ exp(i k xn + µ tm) ∝ exp(i k∆xn+ µ∆tm) = (Ge)
m ei κ n, (1.18)

where κ = k∆x and Ge = eµ∆t. This has the same form as the dependence in equation (1.6), with the numerical G

replaced by the exact Ge. For the the numerical solution to approximate the actual solution of the pde, it must be

that (this is what consistency means)

Ge and G are close to each other when ∆t and ∆x are small. (1.19)

To be more precise, in general G is a function of κ, ∆x, ∆t, and whatever parameters the scheme equations include.

That is G = G(κ, ∆t, ∆x, parameters). Then what is needed is

G(κ, ∆t, ∆x, parameters) = 1 + µ(k) ∆t+ ε∆t, (1.20)

where ε→ 0 as ∆x and ∆t vanish, with k fixed and κ = k∆x.

Remark 1.2 (1.20) is precisely what is needed to get Gm → eµ t as m→∞, with ∆t = t
m . Thus the scheme

solutions converge to the true solution, provided that the scheme is stable — where stable means that the high

frequency # contributions can be neglected. ♣
#That is, contributions from values of κ which are not O(∆x), as assumed in (1.20)).

Let us check (1.20) for the case of (1.8). Here µ = ±i k so that:

Ge = exp(±i k∆t)

= 1± i k∆t− 1

2
k2 (∆t)2 ∓ 1

6
i k3(∆t)3 +O

(
(∆t)4

)
, (1.21)

G = 1− 2 δ λ2 sin2

(
k∆x

2

)
± 2 i λ sin

(
k∆x

2

)
= 1± i k∆t− 1

2
δ k2 (∆t)2 ∓ i 1

24
k3 (∆t)(∆x)2 +O

(
(∆t)2(∆x)2, (∆t)(∆x)4

)
. (1.22)

It is then clear that ε above in (1.20) satisfies 7

ε = O
(
δ∆t, (∆x)2

)
, i.e.: the scheme is consistent. (1.23)

Notice that, by taking δ = 1, we can have agreement of the first three terms in the expansions for Ge and G above

in (1.21 – 1.22), not just the first two. This makes the scheme higher order (thus, in principle, more accurate).

Unfortunately, it also makes it unstable — as can be seen from equation (1.9), which shows that |G| > 1 for all λ 6= 0

and κ 6= 0.

1.1.3 The CFL (Courant-Friedrichs-Lewy) condition

A necessary condition, that all convergent schemes must satisfy, is the CFL condition: The numerical domain of

dependence must include the p.d.e. domain of dependence.

The reason why this is needed should be obvious: a numerical scheme cannot possibly compute the correct solution

7 Recall that we assume δ∆t� 1 — see below (1.5).

18.300 MIT, (Rosales) Notes: vNSA von Neumann Stability Analysis. 6

(converge) if it does not have access to the data that determines the solution. This conditions says that a numerical

scheme must respect the speeds for information transport in the physical problem.

For explicit schemes and hyperbolic problems (with finite speeds of propagation) the CFL condition translates into

limits on the time step of the form ∆t ≤ c∆x, where c is related to the maximum propagation speed in the problem,

and the shape of the scheme stencil.

For explicit schemes in problems with infinite speeds of propagation (e.g.: the heat equation) restrictions on the time

step, of the form ∆t ≤ c (∆x)p — where p > 1 — are needed. This tends to make explicit schemes not very efficient,

as it forces very small time steps (even if not needed for accuracy).

1.2 Example: implicit forward differences for ut + ux = 0

The aim is to solve the equation

ut + ux = 0. (1.24)

To do so we replace the equation by the following finite difference approximation

um+1
n − umn

∆t
+
um+1
n+1 − um+1

n

∆x
= 0, (1.25)

where we use the same notation introduced in (1.2). Expand the solution to the equation as follows

umn = u(xn, tm+1 −∆t) = um+1
n −∆t ut +O((∆t)2),

um+1
n+1 = u(xn + ∆x, tm+1) = um+1

n + ∆xux +O((∆x)2),

where ut and ux are evaluated at (xn, tm+1). Substituting this into (1.25) shows that it approximates the equation

with an error O(∆x, ∆t). Hence, (1.25) gives rise to the consistent scheme

(1− λ)um+1
n + λum+1

n+1 = umn , where λ =
∆t

∆x
> 0. (1.26)

But, can λ be selected so that the scheme is stable ? We investigate this question below.

Remark 1.3 Note that (1.26) is consistent precisely because of (1.25). That is: the scheme is equivalent to a finite

differences approximation to the equation. The order of the scheme is given by the order of the errors in this

approximation — in this case first order in both space and time.

The order of a scheme characterizes the size of the errors that computing with the scheme produces (how good the

solution is) — as long as the scheme is stable. ♣

Remark 1.4 Note that this scheme is implicit. That is, to find the solution at time tm+1 a system of (in this case

linear) equations has to be solved. There is no expression that gives, directly, um+1
n in terms of umn . Implicit schemes

are more expensive (per time step) to implement than explicit schemes. On the other hand, they tend to have better

stability properties — they allow larger time steps than explicit schemes (in some cases much, much, larger). See

§ 1.1.3. ♣

To perform a von Neumann stability analysis, we now look for solutions to the scheme of the form umn = Gmeiκn,

where G is a constant to be found and −π ≤ κ ≤ π is the grid wave number. Substituting this into the scheme

equation, we find
(
1− λ+ λ eiκ

)
G = 1. Thus

G =
1

1− λ+ λ ei κ
. (1.27)

Note that 1/G lies on a circle of radius λ in the complex plane, centered at 1− λ. This circle has to be outside the

unit circle for G to be inside it. Hence all values of G fall inside the unit disk provided that λ > 1. We conclude that

The scheme is stable provided λ > λc = 1. (1.28)

Now notice:

18.300 MIT, (Rosales) Notes: vNSA von Neumann Stability Analysis. 7

1. For κ = 0, G = 1. See note 1.2.

2. This scheme is a little unusual, in the sense that the stability requirement is that ∆t should be “large” enough

— instead of the more common ∆t “small” enough. Nevertheless, this is not a problem, as it is still possible

to let both ∆t and ∆x vanish, while satisfying (1.28). This is all that is needed in order to get a convergent

scheme.

3. Note that, for λ = 1 (i.e.: ∆t = ∆x) the scheme is exact: in this case (1.26) is explicit, and it reproduces the

fact that the general solution to (1.24) has the form u = f(x− t), for some function f . In this case G = e−i κ.

However, we have excluded this case from (1.28) based on the general principle that we always want to have

“high frequency”, grid scale κ ≈ π, oscillations killed by a numerical scheme. In the particular case of this very

special scheme, for this very special equation, one can get away with not doing this (i.e.: use λ = 1). But, in

general, this is not a good idea.

4. Note that the scheme in (1.26) is singular for λ = 1/2, that is: the equations determining um+1
n may not have

a solution. This is easy to see from (1.27), since G =∞ for λ = 1/2 and κ = π. This is a very extreme case of

instability.

5. This scheme is implemented by the script scheme01i in the 18311 MatLab Toolkit. You should check the

behavior of the scheme for various values of λ. For example:

— For λ < 1 the scheme is unstable. However, when λ is very close to one (say: λ = 0.99), the instabilities

grow very slowly, unless ∆x is taken fairly small.

— For λ > 1 the scheme is stable. However, when λ is large (say: λ = 8), the scheme is very dissipative.

Everything decays rather fast, unless ∆x is taken fairly small.

— For λ = 1 the scheme is “exact”. Check what happens with the discontinuous initial data with the script

scheme01i — only for λ = 1 the discontinuity is not smeared by the scheme (this is particularly bad for λ

large).

6. Finally, we check (1.20)

Ge = exp(−i k∆t) = 1− i k∆t− 1

2
k2 (∆t)2 + . . .

G =
1

1− λ+ λ ei k∆x
=

1

1 + i k∆t− 1
2 k

2 ∆t∆x+ . . .

= 1− i k∆t+
1

2
k2 ∆t∆x− k2 (∆t)2 + . . . (1.29)

Thus ε = O(∆t, ∆x) in (1.20).

1.3 Example: backward differences for ut + ux = u

This subsection is yet to be written.

THE END.

