Various lecture notes for 18300.

R. R. Rosales (MIT, Math. Dept., 2-337)

May 8, 2022

Abstract

Notes, both complete and/or incomplete, for MIT's 18.300 (Principles of Applied Mathematics). These notes will be updated from time to time. Check the date and version.

Contents

1 General Nonlinear First Order Equation 1
Empty equation 2
Bi-characteristics 2
Eikonal equation/rays 2
1.1 Fermat's Principle 3

List of Figures

1 General Nonlinear First Order Equation

Here we consider the general nonlinear first order equation

$$
\begin{equation*}
H(\vec{p}, \vec{x}, \phi)=0 \tag{1.1}
\end{equation*}
$$

for the (scalar) function $\phi=\boldsymbol{\phi}(\overrightarrow{\boldsymbol{x}})$, where $\overrightarrow{\boldsymbol{p}}=\boldsymbol{\nabla} \phi$, and \boldsymbol{H}
is a given scalar (smooth enough) function. This equation has the
characteristic form $\quad \frac{\mathrm{d}}{\mathrm{d} t} \boldsymbol{x}_{n}=\boldsymbol{H}_{p_{n}}, \quad \frac{\mathrm{~d}}{\mathrm{~d} t} \boldsymbol{p}_{n}=-\boldsymbol{H}_{x_{n}}-\boldsymbol{p}_{\boldsymbol{n}} \boldsymbol{H}_{\phi}, \quad$ and $\frac{\mathrm{d}}{\mathrm{d} t} \phi=\boldsymbol{p}_{\ell} \boldsymbol{H}_{p_{\ell}}$,
where (i) $1 \leq n \leq N$,
(ii) subscripts indicate partial derivatives of H, (iii) we use the summation convention (add over repeated indexes), (iv) the curves defined by $\frac{\mathrm{d}}{\mathrm{d} t} x_{n}=H_{p_{n}}$ are called bi-characteristics (see remark 1.2), and (v) \boldsymbol{t} is a parameter along the bi-characteristics (the reason we name the parameter \boldsymbol{t} is indicated below). Note that (1.2) is a complete system of $2 N+1$
ode for \vec{x}, \vec{p}, and ϕ. Note also that the equations yield

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \boldsymbol{H}=0 . \tag{1.3}
\end{equation*}
$$

Remark 1.1 If \boldsymbol{H} does not depend on $\boldsymbol{\phi}\left(H_{\phi}=0\right)$, (1.2) has the standard Hamiltonian form of the equations for an isolated mechanical system in classical physics, with \boldsymbol{H} the Hamiltonian (i.e.: Energy), and $\overrightarrow{\boldsymbol{p}}$ the vector of momentums. Then \boldsymbol{t} is time. Further: the equation for ϕ along the bi-characteristics can be writen as $\frac{\mathrm{d}}{\mathrm{d} t} \phi=\vec{p} \cdot \frac{\mathrm{~d}}{\mathrm{~d} t} \overrightarrow{\boldsymbol{x}}$; i.e.: ϕ is the action in the energy surface $\boldsymbol{H}=\mathbf{0}$.

Proof of (1.2), \Rightarrow. Assume that ϕ is a solution of (1.1), and define the curves $\frac{\mathrm{d}}{\mathrm{d} t} x_{n}=H_{p_{n}}$. Then, using the chain rule: [\#1] $\frac{\mathrm{d}}{\mathrm{d} t} p_{n}=\left(p_{n}\right)_{x_{\ell}} H_{p_{n}}=\left(p_{\ell}\right)_{x_{n}} H_{p_{n}}$, since $\phi_{x_{n} x_{\ell}}=\phi_{x_{\ell} x_{n}}$. On the other hand, taking the x_{n} derivative of the equation leads to [\#2] $H_{p_{\ell}}\left(p_{\ell}\right)_{x_{n}}+H_{x_{n}}+H_{\phi} p_{n}=0$. Substituting [\#2] into [\#1] yields $\frac{\mathrm{d}}{\mathrm{d} t} p_{n}=-H_{x_{n}}-p_{n} H_{\phi}$. Finally, the last equation, $\frac{\mathrm{d}}{\mathrm{d} t} \phi=p_{\ell} H_{p_{\ell}}$, as well as (1.3), follow from the chain rule. QED.
Proof of (1.2), \Leftarrow. Assume a function ϕ such that it satisfies (1.2), with the bi-characteristics starting (i.e.: $t=0$) on a hyper-surface \mathcal{S} where $H=0$. Then, since (1.3) applies, ϕ solves (1.1).

Various lecture notes for 18311.

Example 1.1 Empty equation. What happens if we start with an equation that has no solutions, for example take $\boldsymbol{H}=\frac{1}{2} p^{2}+1$. Then the characteristic equations are $\frac{\mathrm{d}}{\mathrm{d} t} \overrightarrow{\boldsymbol{x}}=\overrightarrow{\boldsymbol{p}}, \frac{\mathrm{d}}{\mathrm{d} t} \vec{p}=\mathbf{0}$, and $\frac{\mathrm{d}}{\mathrm{d} t} \phi=\boldsymbol{p}^{2}$. These are fine as ode, however: they cannot provide a solution to the pde because there is no surface \mathcal{S} on which we can have $H=0$.

Remark 1.2 Bi-characteristics. The curves in (1.2) are called bi-characteristics - a special name because they are more special than a typical characteristic, as follows:

Consider (1.1), and let us look for characteristics in the generic sense
defined earlier: surfaces along which "weak singularities" can occur.
Thus we consider a curvilinear coordinate system $\left\{\eta_{n}\right\}$ such that the equation allows $\vec{p}=\nabla \phi$ to be discontinuous across the $\eta_{1}=$ constant surfaces. The relationship between \vec{p} and $\vec{q}=$ "gradient of ϕ in the η coordinates" is (by the chain rule) $\boldsymbol{p}_{n}=\boldsymbol{q}_{\ell} \mathcal{N}_{\ell n}$, where $\mathcal{N}_{\ell n}=\left(\eta_{\ell}\right)_{x_{n}}$. At a characteristic the equation should allow q_{1} to be discontinuous, which leads to (chain rule) $0=H_{q_{1}}=H_{p_{n}}\left(p_{n}\right)_{q_{1}}=H_{p_{n}} \mathcal{N}_{1 n}$ - i.e.: the vectors $\left\{H_{p_{n}}\right\}$ and $\nabla \eta_{1}$ are orthogonal. Hence:

$$
\begin{equation*}
\text { A hyper-surface is characteristic if the vector }\left\{H_{p_{n}}\right\} \text { is tangential to the surface. } \tag{1.5}
\end{equation*}
$$

It follows that:
The bi-characteristics are the intersections of all the possible characteristic hyper-surfaces.
One could say that the bi-characteristics are characteristics on steroids.
Example 1.2 Eikonal equation/rays. The Eikonal equation ${ }^{1}$ is

$$
\begin{gather*}
c^{2}(\nabla \phi)^{2}=1 \tag{1.7}\\
H=\frac{1}{2}\left(c^{2} p^{2}-1\right) \tag{1.8}
\end{gather*}
$$ where $\boldsymbol{c}=\boldsymbol{c}(\overrightarrow{\boldsymbol{x}})>\mathbf{0}$ is the wave-front speed, and the wave-front at time t is given by the implicit equation $\phi=\boldsymbol{t}$. Here we can take where the normalization factor $\frac{1}{2}$ is so that "time" along the

bi-characteristics agrees with the time along the fronts (i.e.: $\frac{\mathrm{d}}{\mathrm{d} t} \phi=1$ below). The characteristic equations are then

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} x_{n}=c^{2} p_{n}, \quad \frac{\mathrm{~d}}{\mathrm{~d} t} p_{n}=-\frac{1}{c} c_{x_{n}}, \quad \text { and } \quad \frac{\mathrm{d}}{\mathrm{~d} t} \phi=1 . \tag{1.9}
\end{equation*}
$$

Proof, using (1.2). The 1 -st equation is obvious. The 2 -nd and 3 -rd follow from $\frac{\mathrm{d}}{\mathrm{d} t} p_{n}=-c c_{x_{n}} p^{2}$ and $\frac{\mathrm{d}}{\mathrm{d} t} \phi=c^{2} p^{2}$, upon use of $c^{2} p^{2}=1$.
Note \#1. In this case the bi-characteristics are also called rays.
Note \#2. Since $c^{2} p^{2}=1$, the first equation above is the same as where $\hat{\boldsymbol{n}}$ is the unit normal to the wave-front. Thus it is just a re-statement of the fact that the wave-front propagates normal to itself at speed c. The second equation is non-trivial, and governs how the normals to the front evolve as the front propagates.

[^0]
1.1 Fermat's Principle

Eliminating $\overrightarrow{\boldsymbol{p}}$ from (1.9) leads to

$$
\begin{array}{r}
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{1}{c^{2}} \frac{\mathrm{~d}}{\mathrm{~d} t} \vec{x}\right)=-\frac{1}{c} \nabla c . \\
\mathrm{d} s=c \mathrm{~d} t \\
\frac{\mathrm{~d}}{\mathrm{~d} s}\left(\frac{1}{c} \frac{\mathrm{~d}}{\mathrm{~d} s} \vec{x}\right)=\nabla \frac{1}{c} \\
T=\int_{\vec{x}_{1}}^{\vec{x}_{2}} \mathrm{~d} t=\int_{\vec{x}_{1}}^{\vec{x}_{2}} \frac{\mathrm{~d} s}{c} \tag{1.1.4}
\end{array}
$$

Fermat's principle states that: The rays/bi-characteristics
of the Eikonal equation are stationary points for the travel time
That is: consider all the path's connecting two fixed points \vec{x}_{1} and \vec{x}_{2}. T is then a function on the set of paths, and the rays connecting \vec{x}_{1} to \vec{x}_{2} (there could be several) are the stationary values of T.
Note: the rays are extrema, not minimums, as often stated. See example 1.1.2
Proof. For an arbitrary path from \vec{x}_{1} to $\vec{x}_{2}, \vec{x}=\vec{x}(t)$, we can write: $T=\int_{\vec{x}_{1}}^{\vec{x}_{2}} \frac{v}{c} \mathrm{~d} t$-where $\vec{v}=\frac{\mathrm{d}}{\mathrm{d} t} \vec{x}, v=|\vec{v}|$, and $\mathrm{d} s=v \mathrm{~d} t$. Hence, with $\mathcal{L}=\mathcal{L}(\vec{v}, \vec{x})=v / c(\vec{x})$, the Euler-Lagrange variational equations, ${ }^{2} \frac{\mathrm{~d}}{\mathrm{~d} t} \mathcal{L}_{\vec{v}}=\mathcal{L}_{\vec{x}}$, applied to T yield $\frac{\mathrm{d}}{\mathrm{d} t}\left(\frac{1}{c v} \vec{v}\right)=v \nabla c^{-1}$. Since $\mathrm{d} s=v \mathrm{~d} t$, this is the same as (1.1.3). QED

Remark 1.1.1 Compatibility of (1.1.3). Equation (1.1.3) is consistent with $|\mathbf{d} \vec{x} / \mathrm{d} s|=1$. Specifically, if $|\mathrm{d} \vec{x} / \mathrm{d} s|=1$ for any value of s, then $|\mathrm{d} \vec{x} / \mathrm{d} s| \equiv 1$.
Proof. Let $\vec{k}=\mathrm{d} \vec{x} / \mathrm{d} s$. Then expand (1.1.3) to $c^{-1} \mathrm{~d} \vec{k} / \mathrm{d} s+\left(\vec{k} \cdot \nabla c^{-1}\right) \vec{k}=\nabla c^{-1}$, and dot multiply by $2 c \vec{k}$ to obtain the equation $\mathrm{d} k^{2} / \mathrm{d} s=2 c\left(1-k^{2}\right) \vec{k} \cdot \nabla c^{-1}$. Hence, if $\boldsymbol{k}^{2}=1$ at some point, $\boldsymbol{k}^{2} \equiv \mathbf{1}$. QED

Remark 1.1.2 Index of refraction. In the case of optics, if $\boldsymbol{c}_{\boldsymbol{0}}$ is the light speed in vacum, $\boldsymbol{n}=\boldsymbol{c}_{0} / \boldsymbol{c}$ is the index of refraction. Thus (1.1.3) is equivalent to

$$
\frac{\mathrm{d}}{\mathrm{~d} s}\left(n \frac{\mathrm{~d}}{\mathrm{~d} s} \vec{x}\right)=\nabla n
$$

Example 1.1.1 Snell's law. yy
Example 1.1.2 Mirror laws and example where a ray is not a minimum. yy

The End.

[^1]
[^0]: ${ }^{1}$ For a wave-front propagating normal to itself at speed c.

[^1]: ${ }^{2}$ The Euler-Lagrange equations are derived elsewhere.

