Various lecture notes for 18300.

R. R. Rosales (MIT, Math. Dept., 2-337)

May 8, 2022

Abstract

Notes, both complete and/or incomplete, for MIT's 18.300 (Principles of Applied Mathematics). These notes will be updated from time to time. Check the date and version.

Contents

1	General Nonlinear First Order Equation	1
	Empty equation	2
	Bi-characteristics	2
	Eikonal equation/rays	2
	1.1 Fermat's Principle	3

List of Figures

1 General Nonlinear First Order Equation

Here we consider the general nonlinear first order equation for the (scalar) function $\phi = \phi(\vec{x})$, where $\vec{p} = \nabla \phi$, and H (1.1)

is a given scalar (smooth enough) function. This equation has the

characteristic form
where (i)
$$1 \le n \le N$$
.
$$\frac{\mathrm{d}}{\mathrm{d}t} x_n = H_{p_n}, \quad \frac{\mathrm{d}}{\mathrm{d}t} p_n = -H_{x_n} - p_n H_{\phi}, \quad \text{and} \quad \frac{\mathrm{d}}{\mathrm{d}t} \phi = p_{\ell} H_{p_{\ell}}, \quad (1.2)$$

(ii) subscripts indicate partial derivatives of H, (iii) we use the summation convention (add over repeated indexes), (iv) the curves defined by $\frac{d}{dt}x_n = H_{p_n}$ are called **bi-characteristics** (see remark 1.2), and (v) t is a parameter along the bi-characteristics (the reason we name the parameter t is indicated below). Note that (1.2) is a complete system of 2N + 1

ode for \vec{x} , \vec{p} , and ϕ . Note also that the equations yield

$$\frac{\mathrm{d}}{\mathrm{d}t}H = 0. \quad (1.3)$$

Remark 1.1 If H does not depend on ϕ ($H_{\phi} = 0$), (1.2) has the standard Hamiltonian form of the equations for an isolated mechanical system in classical physics, with H the Hamiltonian (i.e.: Energy), and \vec{p} the vector of momentums. Then t is time. Further: the equation for ϕ along the bi-characteristics can be written as $\frac{d}{dt}\phi = \vec{p} \cdot \frac{d}{dt}\vec{x}$; i.e.: ϕ is the action in the energy surface H = 0.

Proof of (1.2), \Rightarrow . Assume that ϕ is a solution of (1.1), and define the curves $\frac{d}{dt}x_n = H_{p_n}$. Then, using the chain rule: $[\#1] \frac{d}{dt}p_n = (p_n)_{x_\ell}H_{p_n} = (p_\ell)_{x_n}H_{p_n}$, since $\phi_{x_n x_\ell} = \phi_{x_\ell x_n}$. On the other hand, taking the x_n derivative of the equation leads to $[\#2] H_{p_\ell}(p_\ell)_{x_n} + H_{x_n} + H_{\phi} p_n = 0$. Substituting [#2] into [#1] yields $\frac{d}{dt}p_n = -H_{x_n} - p_n H_{\phi}$. Finally, the last equation, $\frac{d}{dt}\phi = p_\ell H_{p_\ell}$, as well as (1.3), follow from the chain rule. **QED**.

Proof of (1.2), \Leftarrow . Assume a function ϕ such that it satisfies (1.2), with the bi-characteristics starting (i.e.: t = 0) on a hyper-surface S where H = 0. Then, since (1.3) applies, ϕ solves (1.1).

Example 1.1 Empty equation. What happens if we start with an equation that has no solutions, for example take $H = \frac{1}{2}p^2 + 1$. Then the characteristic equations are $\frac{d}{dt}\vec{x} = \vec{p}$, $\frac{d}{dt}\vec{p} = 0$, and $\frac{d}{dt}\phi = p^2$. These are fine as ode, however: **they cannot provide a solution to the pde** because there is no surface S on which we can have H = 0.

Remark 1.2 Bi-characteristics. The curves in (1.2) are called bi-characteristics — a special name because they are more special than a typical characteristic, as follows:

Consider (1.1), and let us look for characteristics in the generic sense defined earlier: surfaces along which "weak singularities" can occur. (1.4)

Thus we consider a curvilinear coordinate system $\{\eta_n\}$ such that the equation allows $\vec{p} = \nabla \phi$ to be discontinuous across the η_1 = constant surfaces. The relationship between \vec{p} and \vec{q} = "gradient of ϕ in the η coordinates" is (by the chain rule) $p_n = q_\ell \mathcal{N}_{\ell n}$, where $\mathcal{N}_{\ell n} = (\eta_\ell)_{x_n}$. At a characteristic the equation should allow q_1 to be discontinuous, which leads to (chain rule) $0 = H_{q_1} = H_{p_n}(p_n)_{q_1} = H_{p_n}\mathcal{N}_{1n}$ i.e.: the vectors $\{H_{p_n}\}$ and $\nabla \eta_1$ are orthogonal. Hence:

A hyper-surface is characteristic if the vector $\{H_{p_n}\}$ is tangential to the surface. (1.5)

It follows that:

The bi-characteristics are the intersections of all the possible characteristic hyper-surfaces. (1.6)

One could say that the bi-characteristics are characteristics on steroids.

Example 1.2 Eikonal equation/rays. The Eikonal equation¹ is $c^2 (\nabla \phi)^2 = 1$, (1.7) where $c = c(\vec{x}) > 0$ is the wave-front speed, and the wave-front at time t is given by the implicit equation $\phi = t$. Here we can take where the normalization factor $\frac{1}{2}$ is so that "time" along the $H = \frac{1}{2}(c^2p^2 - 1)$, (1.8)

bi-characteristics agrees with the time along the fronts (i.e.: $\frac{d}{dt}\phi = 1$ below). The characteristic equations are then

$$\frac{\mathrm{d}}{\mathrm{d}t}x_n = c^2 p_n, \quad \frac{\mathrm{d}}{\mathrm{d}t}p_n = -\frac{1}{c}c_{x_n}, \quad \text{and} \quad \frac{\mathrm{d}}{\mathrm{d}t}\phi = 1.$$
(1.9)

Proof, using (1.2). The 1-st equation is obvious. The 2-nd and 3-rd follow from $\frac{d}{dt}p_n = -c c_{x_n} p^2$ and $\frac{d}{dt}\phi = c^2 p^2$, upon use of $c^2 p^2 = 1$.

Note #1. In this case the bi-characteristics are also called *rays*.

Note #2. Since $c^2 p^2 = 1$, the first equation above is the same as where \hat{n} is the unit normal to the wave-front. Thus it is just a re-statement $\frac{\mathrm{d}}{\mathrm{d}t}\vec{x} = c\,\hat{n}$, (1.10)

of the fact that the wave-front propagates normal to itself at speed c. The second equation is non-trivial,

and governs how the normals to the front evolve as the front propagates.

÷

¹ For a wave-front propagating normal to itself at speed c.

 $\frac{\mathrm{d}}{\mathrm{d}t} \left(\frac{1}{c^2} \frac{\mathrm{d}}{\mathrm{d}t} \vec{x} \right) = -\frac{1}{c} \nabla c. \quad (1.1.1)$ $\mathrm{d}s = c \, \mathrm{d}t, \quad (1.1.2)$

 $\frac{\mathrm{d}}{\mathrm{d}s} \left(\frac{1}{c} \frac{\mathrm{d}}{\mathrm{d}s} \vec{x} \right) = \boldsymbol{\nabla} \frac{1}{c}.$ (1.1.3)

 $T = \int_{\vec{x}_1}^{\vec{x}_2} \mathrm{d}t = \int_{\vec{x}_1}^{\vec{x}_2} \frac{\mathrm{d}s}{c}.$ (1.1.4)

1.1 Fermat's Principle

Eliminating \vec{p} from (1.9) leads to

However, from (1.10) we see that

where s is the **arc-length**. Thus we

can write (see remarks 1.1.1 and 1.1.2)

Fermat's principle states that: *The rays/bi-characteristics*

of the Eikonal equation are stationary points for the travel time That is: consider all the path's connecting two fixed points \vec{x}_1 and \vec{x}_2 . T

is then a function on the set of paths, and the rays connecting $ec{x}_1$ to $ec{x}_2$

(there could be several) are the stationary values of T.

Note: the rays are extrema, not minimums, as often stated. See example 1.1.2

Proof. For an arbitrary path from \vec{x}_1 to \vec{x}_2 , $\vec{x} = \vec{x}(t)$, we can write: $T = \int_{\vec{x}_1}^{\vec{x}_2} \frac{v}{c} dt$ — where $\vec{v} = \frac{d}{dt} \vec{x}$, $v = |\vec{v}|$, and ds = v dt. Hence, with $\mathcal{L} = \mathcal{L}(\vec{v}, \vec{x}) = v/c(\vec{x})$, the Euler-Lagrange variational equations, $\frac{2}{dt} \mathcal{L}_{\vec{v}} = \mathcal{L}_{\vec{x}}$, applied to T yield $\frac{d}{dt} \left(\frac{1}{cv} \vec{v}\right) = v \nabla c^{-1}$. Since ds = v dt, this is the same as (1.1.3). **QED**

Remark 1.1.1 Compatibility of (1.1.3). Equation (1.1.3) is consistent with $|d\vec{x}/ds| = 1$. Specifically, if $|d\vec{x}/ds| = 1$ for any value of s, then $|d\vec{x}/ds| \equiv 1$.

Proof. Let $\vec{k} = d\vec{x}/ds$. Then expand (1.1.3) to $c^{-1}d\vec{k}/ds + (\vec{k} \cdot \nabla c^{-1})\vec{k} = \nabla c^{-1}$, and dot multiply by $2c\vec{k}$ to obtain the equation $dk^2/ds = 2c(1-k^2)\vec{k} \cdot \nabla c^{-1}$. Hence, if $k^2 = 1$ at some point, $k^2 \equiv 1$. QED

Remark 1.1.2 Index of refraction. In the case of optics, if c_0 is the light speed in vacum, $n = c_0/c$ is the index of refraction. Thus (1.1.3) is equivalent to

 $\frac{\mathrm{d}}{\mathrm{d}s}\left(n\frac{\mathrm{d}}{\mathrm{d}s}\vec{x}\right) = \boldsymbol{\nabla}n.$

Example 1.1.1 Snell's law. yy

Example 1.1.2 Mirror laws and example where a ray is not a minimum. yy

The End.

²The Euler-Lagrange equations are derived elsewhere.