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Abstract

Notes, both complete and/or incomplete, for MIT’s 18.300 (Principles of Applied Mathematics). These notes
will be updated from time to time. Check the date and version.
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1 General Nonlinear First Order Equation

Here we consider the general nonlinear first order equation H(p,Z, ¢) =0 (1.1)

for the (scalar) function ¢ = ¢ (&), where p = V¢, and H

is a given scalar (smooth enough) function. This equation has the

characteristic form 3 = H,,,,
where (i) 1 <n < N,

(ii) subscripts indicate partial derivatives of H, (iii) we use the summation convention (add over repeated

d
apn = _Hwn — Pn Han and Eﬁb = Pe¢ szu (1'2)

indexes), (iv) the curves defined by %xn = H,, are called bi-characteristics (see remark 1.2), and (v) ¢ is
a parameter along the bi-characteristics (the reason we name the parameter ¢ is indicated below). Note
that (1.2) is a complete system of 2N + 1

d
ode for &, P, and ¢. Note also that the equations yield EH =0. (1.3)

Remark 1.1 If H does not depend on ¢ (H, = 0), (1.2) has the standard Hamiltonian form of the
equations for an isolated mechanical system in classical physics, with H the Hamiltonian (i.e.: Energy),
and p the vector of momentums. Then ¢ is time. Further: the equation for ¢ along the bi-characteristics
can be writen as %d) =p- %a‘c’; i.e.: ¢ is the action in the energy surface H = 0. )

Proof of (1.2), =-. Assume that ¢ is a solution of (1.1), and define the curves £z, = H,, . Then, using the chain rule:
[#1] $pn = (Pn)a,Hp, = (pe)x, Hp,, since ¢z, 2, = u,2,. On the other hand, taking the x,, derivative of the equation
leads to [#2] Hy,(p¢)s, + Hy, + Hypy = 0. Substituting [#2] into [#1] yields $p, = —H, —p, Hy. Finally, the last
equation, %¢ =pe H,,, as well as (1.3), follow from the chain rule. QED.

Proof of (1.2), <=. Assume a function ¢ such that it satisfies (1.2), with the bi-characteristics starting (i.e.: ¢ = 0) on
a hyper-surface S where H = 0. Then, since (1.3) applies, ¢ solves (1.1).
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Example 1.1 Empty equation. What happens if we start with an equation that has no solutions, for
example take H = % p? + 1. Then the characteristic equations are %:i’ = P, %ﬁ = 0, and %d) = p2.
These are fine as ode, however: they cannot provide a solution to the pde because there is no surface &

on which we can have H = 0. &

Remark 1.2 Bi-characteristics. The curves in (1.2) are called bi-characteristics — a special name because
they are more special than a typical characteristic, as follows:
Consider (1.1), and let us look for characteristics in the generic sense

14
defined earlier: surfaces along which "weak singularities” can occur. (14)

Thus we consider a curvilinear coordinate system {n,,} such that the equation allows 7= V¢ to be discontinuous across
the 11 = constant surfaces. The relationship between p and ¢ = “gradient of ¢ in the 7 coordinates” is (by the chain
rule) pn = qe Nen, where Ny, = (10),, . At a characteristic the equation should allow ¢; to be discontinuous, which

leads to (chain rule) 0 = H,, = Hy, (pn)q, = Hp, N1, — i.e.: the vectors {H,, } and Vn; are orthogonal. Hence:

A hyper-surface is characteristic if the vector {Hy,} is tangential to the surface. (1.5)

It follows that:

The bi-characteristics are the intersections of all the possible characteristic hyper-surfaces. (1.6)
One could say that the bi-characteristics are characteristics on steroids. &
Example 1.2 Eikonal equation/rays. The Eikonal equation ! is A(Vp)2=1, (1.7
where ¢ = ¢(Z) > 0 is the wave-front speed, and the wave-front 1
at time ¢ is given by the implicit equation ¢p = ¢t. Here we can take H = E(czp2 —1), (1.8)

where the normalization factor % is so that “time” along the

bi-characteristics agrees with the time along the fronts (i.e.: %qb = 1 below). The characteristic equations
are then
d d 1

d
awn = c2 p,, Epn = Cz,, and ad) =1. (1.9)

Proof, using (1.2). The 1-st equation is obvious. The 2-nd and 3-rd follow

from %pn = —ccCq, p? and % = ¢2p?, upon use of ¢?p? = 1.
Note #1. In this case the bi-characteristics are also called rays.

£=cn, (1.10)

&~

Note #2. Since ¢?p? = 1, the first equation above is the same as
where 7 is the unit normal to the wave-front. Thus it is just a re-statement
of the fact that the wave-front propagates normal to itself at speed ¢. The second equation is non-trivial,

and governs how the normals to the front evolve as the front propagates. &

! For a wave-front propagating normal to itself at speed c.
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1.1 Fermat’s Principle

d /1 d 1
Eliminating p from (1.9) leads to — | —=—Z| =—-Ve (1.1.1
gp (1.9) P <C2 1 > - (1.1.1)
However, from (1.10) we see that ds = cdt, (1.1.2)
where s is the arc-length. Thus we d /1 d 1
can write (see remarks 1.1.1 and 1.1.2) — ( :'c’) =V-. (1.1.3)
ds \c ds c
Fermat'’s principle states that: The rays/bi-characteristics o 2 g
s
of the Eikonal equation are stationary points for the travel time T = / dt = —. (1.14)
1 # C

That is: consider all the path's connecting two fixed points 7 and Z5. T

is then a function on the set of paths, and the rays connecting &7 to Zs

(there could be several) are the stationary values of T'.

Note: the rays are extrema, not minimums, as often stated. See example 1.1.2

d -

2dt — where ¥ = &, v = |¥], and
c dt

Proof. For an arbitrary path from &; to &2, & = Z(t), we can write: T = fa.%
ds = vdt. Hence, with £ = L(¥, &) = v/c(&), the Euler-Lagrange variational equations, 2 %l:;; = Lz, applied to

T yield & (L ¥) = v Ve 1. Since ds = v dt, this is the same as (1.1.3). QED

cv

Remark 1.1.1 Compatibility of (1.1.3). Equation (1.1.3) is consistent with |dZ/ds| = 1. Specifically,
if |dZ/ds| = 1 for any value of s, then |dZ/ds| = 1.

Proof. Let k = d&/ds. Then expand (1.1.3) to ¢~'dk/ds + (E . Vc_l) k = Ve, and dot multiply by 2 ¢k to
obtain the equation dk2/ds = 2¢ (1 — k2) k - Ve~ 1. Hence, if k2 = 1 at some point, k2 = 1. QED

Remark 1.1.2 Index of refraction. In the case of optics, if ¢g is the light speed q d
in vacum, n = ¢g/c is the index of refraction. Thus (1.1.3) is equivalent to P <n£> = Vn.
s

Example 1.1.1 Snell's law. yy

Example 1.1.2 Mirror laws and example where a ray is not a minimum. yy

The End.

2The Euler-Lagrange equations are derived elsewhere.



