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Abstract

Notes, both complete and/or incomplete, for MIT’s 18.300 (Principles of Applied Mathematics). These notes

will be updated from time to time. Check the date and version.
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1 General Nonlinear First Order Equation

Here we consider the general nonlinear first order equation H(~p, ~x, φ) = 0 (1.1)

for the (scalar) function φ = φ(~x), where ~p = ∇φ, and H

is a given scalar (smooth enough) function. This equation has the

characteristic form
d

dt
xn = Hpn ,

d

dt
pn = −Hxn − pnHφ, and

d

dt
φ = p`Hp` , (1.2)

where (i) 1 ≤ n ≤ N ,

(ii) subscripts indicate partial derivatives of H, (iii) we use the summation convention (add over repeated

indexes), (iv) the curves defined by d
dtxn = Hpn are called bi-characteristics (see remark 1.2), and (v) t is

a parameter along the bi-characteristics (the reason we name the parameter t is indicated below). Note

that (1.2) is a complete system of 2N + 1

ode for ~x, ~p, and φ. Note also that the equations yield
d

dt
H = 0. (1.3)

Remark 1.1 If H does not depend on φ (Hφ = 0), (1.2) has the standard Hamiltonian form of the

equations for an isolated mechanical system in classical physics, with H the Hamiltonian (i.e.: Energy),

and ~p the vector of momentums. Then t is time. Further: the equation for φ along the bi-characteristics

can be writen as d
dt
φ = ~p · d

dt
~x; i.e.: φ is the action in the energy surface H = 0. ♣

Proof of (1.2),⇒. Assume that φ is a solution of (1.1), and define the curves d
dtxn = Hpn . Then, using the chain rule:

[#1] d
dtpn = (pn)x`

Hpn = (p`)xn
Hpn , since φxn x`

= φx` xn
. On the other hand, taking the xn derivative of the equation

leads to [#2] Hp`(p`)xn
+Hxn

+Hφ pn = 0. Substituting [#2] into [#1] yields d
dtpn = −Hxn

− pnHφ. Finally, the last

equation, d
dtφ = p`Hp` , as well as (1.3), follow from the chain rule. QED.

Proof of (1.2), ⇐. Assume a function φ such that it satisfies (1.2), with the bi-characteristics starting (i.e.: t = 0) on

a hyper-surface S where H = 0. Then, since (1.3) applies, φ solves (1.1).

1



Various lecture notes for 18311. Rosales, MIT, room 2-337. 2

Example 1.1 Empty equation. What happens if we start with an equation that has no solutions, for

example take H = 1
2
p2 + 1. Then the characteristic equations are d

dt
~x = ~p, d

dt
~p = 0, and d

dt
φ = p2.

These are fine as ode, however: they cannot provide a solution to the pde because there is no surface S
on which we can have H = 0. ♣

Remark 1.2 Bi-characteristics. The curves in (1.2) are called bi-characteristics — a special name because

they are more special than a typical characteristic, as follows:

Consider (1.1), and let us look for characteristics in the generic sense

defined earlier: surfaces along which ”weak singularities” can occur.
(1.4)

Thus we consider a curvilinear coordinate system {ηn} such that the equation allows ~p = ∇φ to be discontinuous across

the η1 = constant surfaces. The relationship between ~p and ~q = “gradient of φ in the η coordinates” is (by the chain

rule) pn = q`N`n, where N`n = (η`)xn
. At a characteristic the equation should allow q1 to be discontinuous, which

leads to (chain rule) 0 = Hq1 = Hpn(pn)q1 = HpnN1n — i.e.: the vectors {Hpn} and ∇η1 are orthogonal. Hence:

A hyper-surface is characteristic if the vector {Hpn} is tangential to the surface. (1.5)

It follows that:

The bi-characteristics are the intersections of all the possible characteristic hyper-surfaces. (1.6)

One could say that the bi-characteristics are characteristics on steroids. ♣

Example 1.2 Eikonal equation/rays. The Eikonal equation 1 is c2 (∇φ)2 = 1, (1.7)

where c = c(~x) > 0 is the wave-front speed, and the wave-front

at time t is given by the implicit equation φ = t. Here we can take H =
1

2
(c2p2 − 1), (1.8)

where the normalization factor 1
2 is so that “time” along the

bi-characteristics agrees with the time along the fronts (i.e.: d
dtφ = 1 below). The characteristic equations

are then
d

dt
xn = c2 pn,

d

dt
pn = −

1

c
cxn , and

d

dt
φ = 1. (1.9)

Proof, using (1.2). The 1-st equation is obvious. The 2-nd and 3-rd follow

from d
dt
pn = −c cxn p

2 and d
dt
φ = c2p2, upon use of c2p2 = 1.

Note #1. In this case the bi-characteristics are also called rays.

Note #2. Since c2p2 = 1, the first equation above is the same as
d

dt
~x = c n̂, (1.10)

where n̂ is the unit normal to the wave-front. Thus it is just a re-statement

of the fact that the wave-front propagates normal to itself at speed c. The second equation is non-trivial,

and governs how the normals to the front evolve as the front propagates. ♣

1 For a wave-front propagating normal to itself at speed c.
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1.1 Fermat’s Principle

Eliminating ~p from (1.9) leads to
d

dt

(
1

c2
d

dt
~x

)
= −

1

c
∇c. (1.1.1)

However, from (1.10) we see that ds = c dt, (1.1.2)

where s is the arc-length. Thus we

can write (see remarks 1.1.1 and 1.1.2)
d

ds

(
1

c

d

ds
~x

)
= ∇

1

c
. (1.1.3)

Fermat’s principle states that: The rays/bi-characteristics

of the Eikonal equation are stationary points for the travel time T =

∫ ~x2

~x1

dt =

∫ ~x2

~x1

ds

c
. (1.1.4)

That is: consider all the path’s connecting two fixed points ~x1 and ~x2. T

is then a function on the set of paths, and the rays connecting ~x1 to ~x2

(there could be several) are the stationary values of T .

Note: the rays are extrema, not minimums, as often stated. See example 1.1.2

Proof. For an arbitrary path from ~x1 to ~x2, ~x = ~x(t), we can write: T =
∫ ~x2

~x1

v
c
dt — where ~v = d

dt
~x, v = |~v|, and

ds = v dt. Hence, with L = L(~v, ~x) = v/c(~x), the Euler-Lagrange variational equations, 2 d
dt
L~v = L~x, applied to

T yield d
dt

(
1
c v
~v
)
= v∇c−1. Since ds = v dt, this is the same as (1.1.3). QED

Remark 1.1.1 Compatibility of (1.1.3). Equation (1.1.3) is consistent with |d~x/ds| = 1. Specifically,

if |d~x/ds| = 1 for any value of s, then |d~x/ds| ≡ 1.

Proof. Let ~k = d~x/ds. Then expand (1.1.3) to c−1d~k/ds+
(
~k · ∇c−1

)
~k = ∇c−1, and dot multiply by 2 c~k to

obtain the equation dk2/ds = 2 c (1− k2)~k · ∇c−1. Hence, if k2 = 1 at some point, k2 ≡ 1. QED

Remark 1.1.2 Index of refraction. In the case of optics, if c0 is the light speed

in vacum, n = c0/c is the index of refraction. Thus (1.1.3) is equivalent to
d

ds

(
n

d

ds
~x

)
= ∇n.

Example 1.1.1 Snell’s law. yy

Example 1.1.2 Mirror laws and example where a ray is not a minimum. yy

The End.

2The Euler-Lagrange equations are derived elsewhere.


