Homework Assignment 2

Due Friday, September 26.

In the applications of distribution theory that we'll be considering in the next few weeks we'll need a slightly stronger version of the partition of unity theorem (**theorem 1.4.1**) in Friedlander, namely we'll need the following.

Theorem. Let \mathcal{U} be an open set in \mathbb{R}^n and $\{\mathcal{U}_{\alpha}, \alpha \in \mathcal{I}\}\ a$ covering of \mathcal{U} by open sets. Then there exists a sequence of functions, $\psi_i \in C_c^{\infty}(\mathcal{U}), i = 1, 2, \ldots$, such that

- 1. $\psi_i \ge 0$
- 2. For every i, ψ_i is supported in \mathcal{U}_{α} for some α
- 3. If K is a compact subset of \mathcal{U} , supp ψ_i and K are disjoint for all but a finite number of i's
- 4. $\sum \psi_i = 1$

Remark. Note that the sum in 4 makes sense since, by 3, this sum is finite on every compact subset of \mathcal{U} .

Exercise 1. Show that there exists a sequence of compact subsets, A_k of \mathcal{U} such that A_k is contained in the interior of A_{k+1} and such that the union of the A_k 's is \mathcal{U} .

Hint. Try defining A_k as the intersection of the ball $|x| \leq k$, with the set of points, x, in \mathcal{U} which are a distance less than or equal to 1/k from the complement of \mathcal{U} in \mathbb{R}^n , i.e. which satisfy

$$\inf (|x-y|, y \in \mathcal{U}^c) \le 1/k$$

Exercise 2. Using theorem 1.4.1 show that there exist functions

$$\psi_{i,k}$$
, $1 \le i \le N_k$

with the properties 1 and 2 of the theorem above and in addition, the properties

- 3'. For every *i* the support of $\psi_{i,k}$ is contained in the open set Int $A_{k+2} A_{k-1}$.
- 4'. $\sum_{i} \psi_{i,k} = 1$ on the compact set, $A_{k+1} \text{Int} A_k$.

Exercise 3. Let $\psi_1, \psi_2, \psi_3, \ldots$ be a relabeling of the sequences

$$\psi_{1,1},\ldots,\psi_{N_1},\psi_{1,2},\ldots$$

Show that this sequence has the properties 1, 2 and 3 of the theorem above and in place of property 4 the property:

$$\psi = \sum \, \psi_i \ge 1$$

Exercise 4. Show that the ψ_i 's can be converted into a sequence having property 4 as well as by replacing ψ_i by ψ_i/ψ

Additional Exercises. Do exercises 1.1 through 1.5 in chapter 1 of Friedlander (paying special attention to exercise 1.3).