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(a) Let u be a solution to the equation wu; — uzz = —1in0 < z < 1, and ¢ > 0 such that u(z,0) =0
and u(0,t) = u(1,%) = sin (). Is it possible that there exists a point gy such that u(zg,1) =17
Suppose that there is such a point zg. Notice that 1 is the maximum of u on the boundary. So
If u(zo,1) = 1, then u achieves its maximum in (0,1) x (0, 00). This means that u;(zg,1) = 0,

2. Answer the following questions with a full explanation

\
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since this is & maximum with respect to ¢. Similarly, from the second derivative test, we have that
Uzo(2o, 1) < 0. Therefore, at (zo, 1), we have u; —uzz 2 0, 2 contradiction to the hypothesis that
Uy — Uyy = —1. Therefore, no such zq exists. , T

(b) Does the Cauchy problem b i

ug(x, t) + Uzo(z,t) =0 “1<z<1,0<t<T
u(z,0) = |z| -1<z<l
uz(0,%) = u(l,t) =0 0<t<T

have a solution?

First observe that the operator 8; — Ozx 18 smoothing (as seen in the textbook). So the operator
; + Oz is smoothing but in the time reverse direction (this can be seen in discussion in textbook
when considering the “backwards” heat equation). So suppose that there is a solution u to the
above problem and consider the solution at some time 0 < to < T, u(z,to). Since the operator
O; + O is smoothing in the reverse time direction. So as to —+ 0, u should remain smooth.
However, the u(z,0) = |z|, is not smooth, so there cannot be a solution to the given problem. 4

(¢) Check that the function u(z,t) = 8;T'1(z,t) solves the problem

Pr—
-

w(z, ) — upz(z,t) =0 zERE>0
u(z,0) =0 zeR

and that u(z,t) — 0 if t — 0, for each fixed z. Is there a contradiction to the uniqueness theorem
for the global Cauchy problem?

We know that I';(z, ) is a solution t0 U — Uzz = 0, and u(z,0) = 4. So

arl(mvt) _ 82I‘1($,t) =0
ot e

Differentiating with respect to z and interchanging the order of differentiation, we see that
8,1 (x,t) is a solution to Uy — Uzz = 0.
We know

eat — '

Oz At t "

Ifweletu= %, then we can re-write this as

6[‘1 ($,t) _ 1 —z? —1

a3
1 —z2 —1.":- —uz —z2u
N

At — = ——€
Vit 2t 4w

Notice that this approaches 0 as u —+ o9, ‘and that u — o0, as t — 07. Sou = 9.'1(z,t) is a
solution to the given problem. However, this is not a coletradiction to the uniqueness property,
because « is not continuous nor is it bounded by any A= '

(d) Let (u(z,t) be the continuous solution of the Robin’s problem

i St
{ i

ug(z,t) — Ugg(x,t) =0 0<z<1,0<t<T
u(z,0) = sin (77} 0<z<1
—ug(0,t) = ug(1,t) = —hu, A>0,0<t< .

Show that v cannot have a negative minimum. What is the maximum for u?
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Proof. From the maximum principle, it suffices to show that the minimum of u on the boundary
is non-negative. To this end, suppose that the minimum of u on the boundary occurs at (zo,to)
and that u(zo,%o) < 0. Then from the initial condition, we see that to > 0"(since for 0 < z < 1,
sin (7z) > 0.) So if z0 = 0, then u.(0,£) = hu(0,t0) < 0. This means that for some £ > 0,
ule, to) < u(0,to), a contradiction since u(zo, o) is the minimum on the boundary (and hence,
the minimum of u for the entire domain), Similarly, if zo =1, then uz(1,t) = —hu(l, tg) > 0. This
means that for some & > 0, u(1 —&,%0) < u(l, %), 2 contradiction since u(zo, o) is the minimum
on the boundary (and, by the maximum principle, the minimum of u for the entire domain.) :
Therefore, the minimum of % on the boundary must be non-negative.

For the maximum, we will show that the maximum of u on the boundary is 1. To this end,
notice that 1 is the maximum value of sin (7z). Now suppose for the sake of contradiction that
the maximum of the boundary occurs at (g, tp) and that u(zg,tp) > 1. Then o =0 or zp = 1. If
zo = 0, then we have uz(Zo, tg) = hu{zo,to) > 0. So near zo, u is increasing, so there isae > 0 such
that u(e, to) > u(zo, to), 2 contradiction. If zg = 1, then we have u(zo, to) = —hu(wo, to) < 0. So
near o, u is decreasing, so there is a >0, such that u(l — &,to) > u(l,%0), & contradiction.
Therefore, the maximum of v on the boundary is 1, and by the maximum principle, we conclude
that the minimum of u is non-negative and the maximum of v is 1.
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5. (3.4) Let Bg be the circle of radius R centered at (0,0). Use the method of séparation of variables to

solve the problem AL =8 A
Affz==% in Bp
u=1 on §Bg

Find an explicit formula when flz,y) = .
First consider the problem of finding a solution to

Au = f,

in a circle with radius R, where f can be written as a Fourier sine series, We start by supposing that
u can be written as 3° vy (r)wy (8) where the Wy are eigenfunctions from the homogeneous problem.
To find those, suppose that I/ is a solution to the homogenous problem, AU = 0, and further suppose
that U can be written as U{(r, 8} = v(r)w(f). Then we know

O (rJu(6) + 1 (rJw(6) + u(ryur(6) = 0.

Simplifying, we see that
TE’U”(T') -I-:"U!(’F) _ _wu(g)

v(r) w(8)




Since the left-hand side is 2 function of r alone and the right-hand side is a function of # alone, we
need both sides to equal some constant A.

In particular, we have w" (8)+Aw(#) = 0. Since our domain i isa circle, we require that w(f) = w(f+2r).
To satisfy the periodic conditions, we must have A = —u? < 0, and w(f) = Asin (ud) + B cos (u6).
Since we have that f can be expressed as Fourier sine series, we need only cousider w(#) = Asin ( ,uB)
Since w(f) = w(# + 27), we need sin (1) = sin (4 + p27). So pe = £, and we get wi(6) = Asm( £9).

Now suppose that f = 3 bi(r) sm( ). Then we want to find appropriate vi(r) such that U =
Sk (r) sin (£6) is a solution to AU = f. Substituting this sum for U, we see that vg(r) must satisfy

(1) + 20) ) = ().

w

Now in the case that f(z,y) =y, we have f(r,8) = rsin (f). Notice that f(r,#) is already in the form
of a Fourier sine series (it consists of just one term, corresponding to k& = 2.) So our solution will be of
the form v(r)sin (¢), where v(r) satisfies

1 1
H ' =
o'(r) + ~v (r)#;é-v(r) =7
If we let s = logr, then our equation becomes
v"'(8) — v(s) = &*,

which has a solution v(s) = 2e** +C1e” + Cae™* . In terms of the orlgma.l variables, v(r) = 2r®+Cir+
Car—!. However, as argued in the book, we do not consider the r—

So our solution is 1 i
u(r,8) = §T3 sin (8) -+ gC’lr sin (&)

We can find C; such that u(R,f) = 0 and then we would have 1 4 u as a solution to the original
problem. Doing so, we get u(r,8) = 1+ & (r® — R%r) sin (6). In rectangular coordinates, we get

1
u(z,y) = 3 ((332 + yz) y— Rzy) +\ 1



