1.(c) The probability that the particle passes passes through x=L for the first time in the time interval (t,t+dt) is $P(\{T_L > t\}) - P(\{T_L \ge t + dt\})$ $= \int_{-L}^{L} \Gamma_{D}(x,t) dx - \int_{-L}^{L} \Gamma_{D}(x,t+dt) dy$ $= \left[\left(\int_{-L}^{L} -\frac{d}{dt} (\Gamma_{D}(x,t)) dx \right) \cdot dt \right]$ from (1). i $= \left(\int_{-L}^{L} \frac{-1}{4\sqrt{\pi D_{t^{3}}}} e^{-\frac{x^{2}}{40t}} + \frac{x^{2}}{\sqrt{\pi D_{t^{5}}}} e^{-\frac{x^{2}}{40t}} dx \right) dt.$ 313

10110

2. Consider the problem

G sulfed

Equations

ierman,

"Applied Partial Differential (: $\begin{cases} u_t - u_{xx} = 0 & x > 0, t > 0 \\ u(x,0) = 0 & x \ge 0 \\ u_x(0,t) = g(t) & t > 0 \end{cases}$

 $= dt \int_{-L} \frac{d}{dt} \Gamma_D(x,t) dx$

 $= -dt \int_{-L}^{L} \left(\frac{-1}{4\sqrt{\pi D}} t^{\frac{-3}{2}} e^{\frac{-x^2}{4Dt}} + \frac{x^2}{8\sqrt{\pi D^3}} t^{\frac{-5}{2}} e^{\frac{-x^2}{4Dt}} \right) dx$

(a) Using Fourier (cosine) transform solve the problem above where g is continuous and bounded in $L^2(0,\infty)$. Prove that this is the only solution.

Let \hat{u} denote the Fourier cosine transform of u(x, t). That is,

$$\hat{u}(\omega,t) = \frac{2}{\pi} \int_0^\infty u(x,t) \cos{(\omega x)} dx.$$

Taking the transform of the pde, we get

$$\frac{d}{dt}\hat{u}(\omega,t) = \frac{-2}{\pi}g(t) - \omega^2 \hat{u}(\omega,t)$$

Solving, we see that

$$\hat{u}(\omega,t) = \frac{-2}{\pi} e^{-\omega^2 t} \int_0^t g(y) e^{\omega^2 y} dy$$

So we have

$$u(x,t) = \frac{-2}{\pi} \int_0^\infty e^{-\omega^2 t} \cos\left(\omega x\right) \left(\int_0^t g(y) e^{\omega^2 y} dy\right) d\omega.$$

To prove that this is unique, we first will extend the domain from x > 0 to $x \in \mathbb{R}$ through even reflection. So if there is another v that satisfies

$$\begin{cases} v_t - v_{xx} = 0 & x \in \mathbb{R}, t > 0 \\ v(x, 0) = 0 & x \in \mathbb{R} \\ v_x(0, t) = g(t) & t > 0 \end{cases}$$

(note, the even reflection guarantees that $v_x(0,t) = 0$ because v would be symmetric about x = 0.) then w = u - v satisfies

$$\begin{cases} w_t - w_{xx} = 0 & x \in \mathbb{R}, t > 0 \\ w(x, 0) = 0 & x \in \mathbb{R} \\ w_x(0, t) = 0 & t > 0 \end{cases}$$

which has unique solution w = 0. So u = v is the unique solution.

2

(b) Prove that, without the condition that g is in $L^2(0,\infty)$, the problem above does not have a unique solution by using the two functions $w_1(x,t) = e^x \sin(2t+x)$ and $w_2(x,t) = -e^{-x} \sin(2t-x)$. Notice that

$$w_{1t} = 2e^{x}\cos(2t+x) w_{1x} = e^{x}\sin(2t+x) + e^{x}\cos(2t+x) w_{1xx} = 2e^{x}\cos(2t+x)$$

and

$$w_{2t} = -2e^{-x}\cos(2t - x)$$

$$w_{2x} = e^{-x}\sin(2t - x) + e^{-x}\cos(2t - x)$$

$$w_{2xx} = -2e^{-x}\cos(2t - x)$$

Notice that both w_1 and w_2 satisfy $u_t - u_{xx} = 0$ and $u_x(0,t) = 0$. However, $w_1(x,0) = e^x \sin(x)$ and $w_2(x,0) = e^{-x} \sin(x)$.

We know a solution to

$$\begin{cases} u_x - u_{tt} = 0 & x \in \mathbb{R}, t > 0 \\ u(x, 0) = e^{|x|} \sin(|x|) & x \in \mathbb{R} \\ u_x(0, t) = 0 & t > 0 \end{cases}$$

is given by

$$u_{1}(x,t) = \int_{\mathbb{R}} e^{|y|} \sin(|y|) \Gamma(x-y,t) dy$$

=
$$\int_{0}^{\infty} e^{y} \sin(y) \Gamma(x-y,t) dy + \int_{-\infty}^{0} e^{-y} \sin(-y) \Gamma(x-y,t) dy$$

=
$$\int_{0}^{\infty} e^{y} \sin(y) \Gamma(x-y,t) dy + \int_{\infty}^{0} e^{w} \sin(w) \Gamma(x+w,t) dw$$

where w = -y. We can rewrite this as

$$u_1(x,t) = \int_0^\infty e^y \sin(y) \left(\Gamma(x-y,t) - \Gamma(x+y,t)\right) dy$$

(Note, we extended the domain from x > 0 to $x \in \mathbb{R}$, and adjusted the initial condition through even reflection. This makes u_1 symmetric around 0, so indeed $u_{1x}(0,t) = 0$.)

Similarly, a solution to

$$\begin{cases} u_x - u_{tt} = 0 & x \in \mathbb{R}, t > 0 \\ u(x,0) = -e^{-|x|} \sin(|x|) & x \in \mathbb{R} \\ u_x(0,t) = 0 & t > 0 \end{cases}$$

is given by

$$u_2(x,t) = \int_0^\infty e^{-y} \sin(y) \left(\Gamma(x-y,t) - \Gamma(x+y,t)\right) dy$$

(Note, we have again extended the domain from x > 0 to $x \in \mathbb{R}$ via even reflection). So the function $z_1 = w_1 - u_1$ satisfies

$$\begin{cases} z_t - z_{xx} = 0 & x \in \mathbb{R}, t > 0 \\ z(x,0) = 0 & x \in \mathbb{R} \\ z_x(0,t) = \sin(2t) + \cos(2t) & t > 0 \end{cases}$$

3

Similarly, the function $z_2 = w_2 - u_2$ satisfies

$$\begin{cases} z_t - z_{xx} = 0 & x \in \mathbb{R}t > 0\\ z(x,0) = 0 & x \in \mathbb{R}\\ z_x(0,t) = \sin(2t) + \cos(2t) & t > 0 \end{cases}$$

Notice that

$$\int_0^L (\sin(2t) + \cos(2t))^2 dt = L + \int_0^L 2\sin(2t)\cos(2t) dt,$$

which goes to ∞ as $L \to \infty$. So the function $\sin(2t) + \cos(2t)$ is not L^2 . We claim that $z_1 \neq z_2$. Consider $z_1(0,t)$ and $z_2(0,t)$.

$$z_1(0,t) = \sin(2t) - \int_0^\infty e^y \sin(y) \left(\Gamma(-y) - \Gamma(y)\right) dy = \sin(2t)$$

since $\Gamma(-y) = \Gamma(y)$, Similarly,

$$z_2(0,t) = -\sin\left(2t\right).$$

Since $z_1(0,t) \neq z_2(0,t)$, we see that $z_1 \neq z_2$.

Great Job-!

Let V(x,t)= u(x,t) e 10110 Then Vt = Ute + kuehx+kt Vx = Uxehxtkt thuehxtkt Vxx = Uxxehx+kt + hUxehx+kt + hUxehx+kt + huehx+kt $Vt - DV_{XX} = e^{h \times tkt} (Ut + ku - DU_{XX} - 2h DU_{X} - h^2 DU)$ To make Ut-DVXX=0, we need zho=b and hork=c Thus $h = \frac{b}{20}$ and $k = \frac{b^2}{40} - c$ If hand k are set as above, then $\begin{cases} V_t - DV_{XX} = 0 \\ V(X,0) = U(X,0)e^{hX} = g(X)e^{hX/2D} \stackrel{\Delta}{=} G(X) \end{cases}$ $\Rightarrow V(X,t) = \frac{1}{\sqrt{4\pi}Dt} \int_{\mathcal{R}} g_{i} \psi_{j} e^{\frac{by}{2D}} e^{-\frac{(x-y)^{t}}{4Dt}} dy$ $\exists u(x,t) = V(x,t)e^{-hx-kt} = V(x,t)e^{-\frac{h}{20}x-(\frac{h^2}{40}-c)t}$ $= \frac{e^{-\frac{b}{2D}x - \frac{b}{4D}c}}{(n\pi D + 1)R} \int_{R} g_{U}(y) e^{\frac{by}{2D} - \frac{(x - y)^{2}}{4Dt}} dy$ If c=0, g is bounded, then assume that (guy) = M, tyth Thus $u(x,t) \leq e^{-\frac{b}{20}x - (\frac{b^2}{40} - c)t} \frac{M}{\sqrt{4\pi ot}} \int_{R} e^{\frac{by}{20} - \frac{(x-y)^2}{4ot}} (*x)$ Note that when to x are fixed, $\frac{1}{\sqrt{4Dt}}\int_{\mathcal{R}}e^{\frac{by}{2D}-\frac{(x-y)^2}{4Dt}}dy$ (+) $= \int_{R} e^{-z^{2}+d}$ $= \int_{R} e^{-z^{2}+d}$ $= \int_{V} e^{-z^{2}+d}$ by b, D and t. Thus (*) is bounded. i.e. (*) < K, V t for some constant K. for some constant K. Back to 1++1, Suice \$2-1.20, UCX, +1-10 as t-1-00, V 4

Problem 2.15 4

Find an explicit formula for the solution of the Cauchy problem

 $\left\{ \begin{array}{ll} u_{t}=u_{xx} & x>0, t>0\\ u(x,0)=g(x) & x\geq 0\\ u(0,t)=0 & t>0. \end{array} \right.$

with g continuous and g(0) = 0.

Hint: Extend g to x < 0 by odd reflection: g(-x) = -g(x). Solve the corresponding global Cauchy problem and write the result as an integral on $(0, +\infty)$.

Solution: Following the hint, consider the global Cauchy problem $v_t = v_{xx}$ on $\mathbb{R} \times (0,\infty)$ with initial condition v(x,0) = h(x) where h(x) = g(x) for x > 0 and h(x) = -g(|x|) for x < 0, and h(0) = g(0) = 0. The text gives us the solution

$$v(x,t) = \int_{\mathbb{R}} h(y) \Gamma_D(x-y,t) dy.$$

Since on the interval $[0,\infty) \times [0,\infty)$ the problems in u and v are the same, this function v solves the first two parts of this Cauchy problem. We just need to check that v(0,t) = 0. Observe that

$$\begin{aligned} v(0,t) &= \int_{\mathbb{R}} h(y)\Gamma_D(0-y,t)dy \\ &= \int_{-\infty}^0 h(y)\Gamma_D(-y,t)dy + \int_0^\infty h(y)\Gamma_D(-y,t)dy \\ &= -\int_{\infty}^0 h(-z)\Gamma_D(-(-z),t)dz + \int_0^\infty h(y)\Gamma_D(-y,t)dy \\ &= \int_0^\infty -h(z)\Gamma_D(z,t)dz + \int_0^\infty h(y)\Gamma_D(y,t)dy \\ &= \int_0^\infty h(y)\Gamma_D(y,t) - h(y)\Gamma_D(y,t)dy = 0 \end{aligned}$$

y the change of vars y
ightarrow -z

Ŷ

by the change of vars $z \to y$.

20110

(2)

since $\Gamma_D(-y,t) = \Gamma_D(y,t)$

Thus we have v(0,t) = 0. Finally, we need to write u = v as an integral over $(0,\infty)$. Following the same steps as above, we can turn u = v into the integral

$$u(x,t) = \int_0^\infty g(y) \left(\Gamma_D(x-y,t) - \Gamma_D(x+y,t) \right) dy$$

and we are done.

2

Problem 2.16 5

Let $Q_T = \Omega \times (0,T)$, with Ω bounded domain in \mathbb{R}^n . Let $u \in C^{2,1}(Q_T) \cap C(\overline{Q}_T)$ satisfy the equation

$$u_t = D\Delta u + \mathbf{b}(\mathbf{x}, t) \cdot \nabla u + c(\mathbf{x}, t)u$$

5. (2.16) Let $Q_T = \Omega \times (0, T)$ with Ω bounded domain in \mathbb{R}^n . Let $u \in C^{2,1}(Q_T) \cap C(Q_T)$ satisfy the equation

$$u_t = D\Delta u + \mathbf{b}(\mathbf{x}, t) \cdot \nabla u + c(\mathbf{x}, t)u$$

in Q_T , where b and c are continuous in $\overline{Q_T}$. Show that if $u \ge 0$ (resp. $u \le 0$) on $\partial_p Q_T$ then $u \ge 0$ (resp. $u \le 0$) in Q_T .

Proof. We will first prove that if $u \ge 0$ on $\partial_p Q_T$ then $u \ge 0$ in Q_T . To this end, we first simplify our consideration to the case that $c(\mathbf{x},t) \le a < 0$. So suppose that $u(\mathbf{x},t) = v(\mathbf{x},t)e^{kt}$. Then $u_t = D\Delta u + \mathbf{b}(\mathbf{x},t) \cdot \nabla u + c(\mathbf{x},t)u$ if and only if

$$v_t(\mathbf{x}, t)e^{kt} = e^{kt} \left(D\Delta u + \mathbf{b}(\mathbf{x}, t) \cdot \nabla v + (c(\mathbf{x}, t) - k) v \right)$$

Since $\overline{Q_T}$ is compact, we know that c is bounded above by some M. So if we choose k > M, then v satisfies

$$u_t(\mathbf{x},t) = D\Delta u + \mathbf{b}(\mathbf{x},t) \cdot \nabla v + c^*(\mathbf{x},t)v$$

where $c^*(\mathbf{x},t) = c(\mathbf{x},t) - k \le M - k < 0$. Since $u \ge 0$ iff $v \ge 0$, we need only consider the case where $c(\mathbf{x},t) \le a < 0$, (as we can simplify the problem to this case through the above procedure, choosing an appropriate k).

Now, we know that $u \in C^{2,1}(\overline{Q_T})$. Since $\overline{Q_T}$ is compact, u achieves a minimum at some point (\mathbf{x}_0, t_0) . We will show that $u(\mathbf{x}_0, t_0) \ge 0$. There are three possibilites: $(\mathbf{x}_0, t_0) \in \partial_p Q_T$, $(\mathbf{x}_0, t_0) \in Q \times \{0, T\}$, and $(\mathbf{x}_0, t_0) \in Q \times \{T\}$.

Case 1: $(\mathbf{x}_0, t_0) \in \partial_p Q_T$

In this case, we know that $u(\mathbf{x}_0, t_0) \ge 0$, by hypothesis.

Case 2: $(\mathbf{x}_0, t_0) \in Q \times (0, T)$

In this case, we know that $\nabla u(\mathbf{x}_0, t_0) = 0$, by the first partial derivative test. Furthermore, since $u(\mathbf{x}_0, t_0)$ is a minimum, we know that $\Delta u(\mathbf{x}_0, t_0) \ge 0$, by the second partial derivative test. We also know that $u(x_0, t_0)$ is a minimum with respect to time, so we have $u_t(x_0, t_0) = 0$. So we have

$$c(x_0, t_0)u(x_0, t_0) = u_t(x_0, t_0) - D\Delta u(x_0, t_0) < 0$$

Since $c(\mathbf{x}_0, t_0) < 0$, we must have $u(x_0, t_0) \ge 0$. Case 3: $(x_0, t_0) \in Q \times \{T\}$. In this case, we have $t_0 = T$ and we must have $u_t(x_0, t_0) \leq 0$, since the function must decrease to $u(x_0, T)$. Like above, we have $\Delta u(x_0, t_0) \geq 0$ and $\nabla u(x_0, t_0) = 0$. So

$$c(\mathbf{x}_{0}, t_{0})u(\mathbf{x}_{0}, t_{0}) = u_{t}(\mathbf{x}_{0}, t_{0}) - D\Delta u(\mathbf{x}_{0}, t_{0}) \le 0.$$

Since $c(\mathbf{x},t) < 0$, we conclude that $u(\mathbf{x}_0,t_0) \ge 0$.

So in all three cases, we see that $u(\mathbf{x}_0, t_0)$ is non-negative. That is,

 $min_{\overline{Q_T}}u(\mathbf{x},t) \ge 0,$

and we conclude that $u \ge 0$ in Q_T .

If $u \leq 0$ on $\partial_p Q_T$, we could apply the same ideas above but with the function w = -u and would conclude that on Q_T , $w \geq 0$ so $u \leq 0$.

Very Nice! 10110

7