Math 411 - Ordinary Differential Equations

Review Notes - 2

1 - ODE’s in the plane

An autonomous system of two ODEs has the form

x' = f($7y) )
{y’ =g(z,y). .

We regard (z(t),y(t)) as the position at time ¢ of a point moving in the plane, so that the vector
(z',y") = (f,g) determines its velocity. Here “autonomous” means that the functions f, g do not
depend explicitly on time t.

If t — (x(t), y(t)) is a solution defined on a maximal interval («,w), then the set of points

0 = {@®,y0); te(w)} c B

is called an orbit. A phase plane diagram for (1) is obtained by drawing orbits and equilibrium
points, and marking the direction of motion along the orbits. Two methods:

e Reduce the system of two ODEs to one single scalar equation

dy _ dy/dt _ g(z,y)

de — dx/dt — f(x,y)

If this equation turns out to be linear, or separable, an explicit solution can be found.

e Start by drawing null-clines, i.e. curves in the x-y plane where
- either f(x,y) =0, so that the speed of the point (z,y) is a vertical vector: (z’,y’) = (0, g(z,v)).
- or g(x,y) = 0, so that the speed of the point (z,y) is a horizontal vector: (z’,vy") = (f(x,y), 0).

Then sketch the trajectories of the ODE, keeping in mind the sign of f, g in the various regions.

2 - Hamiltonian systems

The system (1) is hamiltonian if it can be written in the form

r = GH(:E, y) ’
0 2)
ro_ OH (z,y)
v = oxr



for some function H(x,y). This is possible provided that

if(:v,y) = —;Jg(x,y)- (3)

If the identity (3) holds at every point (x,y), to find a function H(z,y) such that %;E’y) = f(x,y)

and W = —g(z,y) we proceed in two steps:

1. Regarding z as a constant, we find an antiderivative of the function y — f(z,y), in the form

H(z,y) = /f(w,y)dy + k(z).

This guarantees that %z’y) = f(z,vy).

2. We then determine k(x) so that H satisfies the additional relation % = —g(x,y).

For the Hamiltonian system (2), the function H is constant along every solution. Indeed, by
the chain rule

d oH , . OH , . OHOH  OH ( OH\ _
GHE@y0) = JoaW+ 5 00 = 505+ < ag;) =0

The orbits of (2) are thus contained in level sets of H, i.e. sets where H(x,y) = constant.

3 - Phase plane diagrams for linear systems

Consider the linear homogeneous system
x’ a b T
()= (20) () @

Depending on the eigenvalues A1, Ao of the matrix A = <CCL Z), various cases arise.

We first assume that the eigenvalues A1, Ay are real and distinct. Let v1, vo be corresponding
eigenvectors. The general solution is thus

creMivy 4 cpet2lvy

CASE 1 (stable node): A\ < Ay < 0. As t — 400, all trajectories flow into the origin. The
component along vi decays faster, and trajectories are asymptotically tangent to vs.

CASE 2 (unstable node): 0 < \; < \y. As t — +o0, trajectories flow away from the origin,
becoming arbitrarily large. For negative times, as t — —oo, the component along v, decays faster,
and trajectories are asymptotically tangent to v;.
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CASE 3 (saddle): A\; < 0 < A2. The zero solution is unstable. As t — +o0 the component along
vy approaches zero, while the component along vo becomes arbitrarily large. On the other hand,
as t — —oo, the vi-component becomes large, while the vo component approaches zero.

}\_1<}\,2<O 0<}\,1<7\,2 7\.1<O<7\.2

W

Left: a stable node. Middle: an unstable node. Right: a saddle.

CASE 4 (degenerate node): Assume that the matrix A has a double eigenvalue A € IR.
A0
0 A
are half lines emanating from the origin. If A is not diagonalizable (only one linearly independent
eigenvector vy can be found), then trajectories approach the origin tangent to vy.
If A > 0 then the origin is an unstable node. The orbits are the same as in the stable case,
reversing the time direction.

If A < 0 then the origin is a stable node. If A = is diagonal, then all trajectories

A =hy<0 h=h,>0

AN -
\\y X

Left: a stable degenerate node (in the case of only one linearly independent eigenvector).
Right: an unstable degenerate node (in the case of two linearly independent eigenvectors).
Next, assume that the matrix A has complex eigenvalues: A = « + i3, with G # 0.

CASE 5 (center): If o = 0, solutions are periodic. Trajectories are ellipses (or circumferences)
centered at the origin.

CASE 6 (stable spiral point): If o < 0, trajectories are spirals converging to the origin as
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t — +o0.

CASE 7 (unstable spiral point): If a > 0, trajectories are spirals moving away from the origin
as time increases.

A==+ip y A=az+ip Y/
A=oaz+if
a<0
)
X
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Left: a center. Middle: a stable spiral point. Right: an unstable spiral point.
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4 - Stability for nonlinear systems

Given the differential equation on IR"

we denote by z(t) = ¢(t,y) the solution to (5) which starts at the point y € IR™:
z(0) =y. (6)
The function ¢ satisfies the semigroup property

dt+1,y) = ot, ¢(1,9)) for every t,7 > 0, y € IR".

We say that xg € IR"™ is an equilibrium point if f(z¢) = 0.

The point x( is a stable equilibrium if for every ¢ > 0 there exists § > 0 such that:

if |y —wo| <6 then ‘qﬁ(t,y)—xo} <e forall t>0.

The point x is an asymptotically stable equilibrium if, in addition, for |y — z¢| < § one has

lim ¢(t7y) = To-

t—-+oo



asymptotically stable equilibrium stable equilibrium

THE METHOD OF LYAPUNOV FUNCTIONS

Let z¢ be an equilibrium point for the differential equation (5).
A continuously differentiable function V' = V'(z) defined for = in a neighborhood of z( is a
Lyapunov function if

V(zg) =0 and V(z)>0 forevery z # zo, (L1)
VV(z)- f(z) <0 at every point xz € IR". (L2)

Because of (L2), for every solution of the differential equation (5) we have

SV@) = V@) () = YV(()- f@0) <O

Hence V' (z(t)) is non-increasing in time.
In case where (L2) is replaced by the stronger condition
VV(z)- f(z) <0 at every point  x # xg. (L2+)

then we say that V is a strict Lyapunov function. In this case, V(z(t)) is strictly decreasing
along solutions of the differential equation (except when z(t) = x).

e If a Lyapunov function exists, then xq is a stable equilibrium point.
o If a strict Lyapunov function exists, then xg is an asymptotically stable equilibrium point.

e (LaSalle) If a Lyapunov function V exists, and for every initial point y # xo the function
t— V(op(t,y)) is not a constant, then xy is an asymptotically stable equilibrium point.

There are no general rules for constructing a Lyapunov function. Some hints:
— If the ODE models a physical system, try with V' = total energy of the system.

— For the planar system (1), if (xg,yo) are the coordinates of an equilibrium point, try with
V(z,y) = a(z — 20)? + b(y — yo)?, with suitable coefficients a,b > 0.
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THE METHOD OF LINEARIZATION

Let 2y be an equilibrium point for the differential equation (5). Compute the n x n Jacobian
matrix of f at the point zg :

8:131 8w2 81’n
A= Df(wo) = | + o

Ofn  Ofn ... Ofa

Ox1 Oxo Oy,

e If all the eigenvalues of A have strictly negative real part, then xg is an asymptotically stable
equilibrium.

e If at least one of the eigenvalues of A has strictly positive real part, then xg is an unstable
equilibrium point.

This method does not provide information if the eigenvalues of A have zero real part.

5 - Invariant domains

Let x(t) be a solution of the differential equation (5), defined for all ¢ € [0, +00).
Its w-limit set is the set

{z € IR"™; there exists a sequence t — +oo such that x(ty) — z}.

Note: if lim;— o () = xg, then the w-limit set is simply {z¢}.
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Left: the domain D; is positively invariant, while Dy is not. Right: The domain D is positively invariant.
By removing a neighborhood of the strictly unstable equilibrium point, we obtain a domain which is
still positively invariant but does not contain any equilibrium point. Hence it must contain a cycle.
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A domain D C IR? is positively invariant for the differential equation (5) if
y €D implies o(t,y) € D forallt > 0.

In other words, a solution that starts in D remains in D for all times ¢ > 0. The domain D
is positively invariant provided that the velocity vector ' = f(x) is tangent, or points toward the
interior of D, at every point x on the boundary of D.

6 - Periodic solutions

We now look again at ODEs in the plane. These are written as

{x’:f(x,y),

y = g(z,y).

Existence of periodic orbits.
A nontrivial periodic orbit is called a cycle.

e (Poincaré-Bendixson) Let D C IR? be a closed, bounded, positively invariant set. Then D
contains at least one equilibrium point or a cycle.

o In addition, assume that all equilibrium points inside D are strictly unstable, i.e. at these equilib-
Jo Sy

0 g > has eigenvalues with strictly positive real parts. Then
z Gy

rium points the Jacobian matriz <

D contains a cycle.

Note: inside the region bounded by a periodic orbit, one can also find at least one equilibrium
point.

Non-existence of periodic orbits.
e If the system (1) has no equilibrium points, then it cannot have any cycle.

o If f(z,y) > 0 for all 2, y then there exists no cycle. Same conclusion if f(z,y) < 0 for all z,y, or
if g(x,y) >0 for all z,y, orif g(z,y) <0 for all x,y.
e (Bendixson-Dulac) Let D C IR? be a convexr domain in the z-y plane. Assume that we can find

. a(z,y) f(z, y)) :
a function a(x,y) such that the vector field v = satisfies
f (@) f (a(ﬂc,y)g(w,y) fi

divv = fo+g, > 0 at every point (x,y) € Q.

Then the domain D cannot contain any periodic orbit.

Indeed, if there exists a closed orbit v entirely contained in the domain D, call ) the domain
having v as boundary. Then the divergence theorem gives a contradiction:

O</divv:/v-n:O.
Q Y
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Applying the divergence theorem: the vector v is tangent to the cycle «, while n is the outer unit normal.
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