
Math 411 - Ordinary Differential Equations

Review Notes - 2

1 - ODE’s in the plane

An autonomous system of two ODEs has the form
�

x
� = f(x, y) ,

y
� = g(x, y).

(1)

We regard (x(t), y(t)) as the position at time t of a point moving in the plane, so that the vector
(x�, y�) = (f, g) determines its velocity. Here “autonomous” means that the functions f, g do not
depend explicitly on time t.

If t �→ (x(t), y(t)) is a solution defined on a maximal interval (α, ω), then the set of points

O =
�

(x(t), y(t)) ; t ∈ (α, ω)
�
⊂ IR

2

is called an orbit. A phase plane diagram for (1) is obtained by drawing orbits and equilibrium
points, and marking the direction of motion along the orbits. Two methods:

• Reduce the system of two ODEs to one single scalar equation

dy

dx
=

dy/dt

dx/dt
=

g(x, y)
f(x, y)

.

If this equation turns out to be linear, or separable, an explicit solution can be found.

• Start by drawing null-clines, i.e. curves in the x-y plane where

- either f(x, y) = 0, so that the speed of the point (x, y) is a vertical vector: (x�, y�) = (0, g(x, y)).

- or g(x, y) = 0, so that the speed of the point (x, y) is a horizontal vector: (x�, y�) = (f(x, y), 0).

Then sketch the trajectories of the ODE, keeping in mind the sign of f, g in the various regions.

2 - Hamiltonian systems

The system (1) is hamiltonian if it can be written in the form





x
� =

∂H(x, y)
∂y

,

y
� = −

∂H(x, y)
∂x

.

(2)
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for some function H(x, y). This is possible provided that

∂

∂x
f(x, y) = −

∂

∂y
g(x, y). (3)

If the identity (3) holds at every point (x, y), to find a function H(x, y) such that ∂H(x,y)
∂y

= f(x, y)
and ∂H(x,y)

∂x
= −g(x, y) we proceed in two steps:

1. Regarding x as a constant, we find an antiderivative of the function y �→ f(x, y), in the form

H(x, y) =
�

f(x, y) dy + k(x).

This guarantees that ∂H(x,y)
∂y

= f(x, y).

2. We then determine k(x) so that H satisfies the additional relation ∂H(x,y)
∂x

= −g(x, y).

For the Hamiltonian system (2), the function H is constant along every solution. Indeed, by
the chain rule

d

dt
H(x(t), y(t)) =

∂H

∂x
x
�(t) +

∂H

∂y
y
�(t) =

∂H

∂x

∂H

∂y
+

∂H

∂y

�
−

∂H

∂x

�
= 0 .

The orbits of (2) are thus contained in level sets of H, i.e. sets where H(x, y) = constant.

3 - Phase plane diagrams for linear systems

Consider the linear homogeneous system

�
x
�

y
�

�
=

�
a b

c d

��
x

y

�
. (4)

Depending on the eigenvalues λ1, λ2 of the matrix A =
�

a b

c d

�
, various cases arise.

We first assume that the eigenvalues λ1, λ2 are real and distinct. Let v1,v2 be corresponding
eigenvectors. The general solution is thus

c1e
λ1tv1 + c2e

λ2tv2 .

CASE 1 (stable node): λ1 < λ2 < 0. As t → +∞, all trajectories flow into the origin. The
component along v1 decays faster, and trajectories are asymptotically tangent to v2.

CASE 2 (unstable node): 0 < λ1 < λ2. As t → +∞, trajectories flow away from the origin,
becoming arbitrarily large. For negative times, as t→ −∞, the component along v2 decays faster,
and trajectories are asymptotically tangent to v1.
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CASE 3 (saddle): λ1 < 0 < λ2. The zero solution is unstable. As t→ +∞ the component along
v1 approaches zero, while the component along v2 becomes arbitrarily large. On the other hand,
as t→ −∞, the v1-component becomes large, while the v2 component approaches zero.

2

v1

v2 v

v

1

2

λ   < λ   < 01 2 0 < λ   < λ1 2

v2

v1

λ   < 0 < λ1

Left: a stable node. Middle: an unstable node. Right: a saddle.

CASE 4 (degenerate node): Assume that the matrix A has a double eigenvalue λ ∈ IR.

If λ < 0 then the origin is a stable node. If A =
�

λ 0
0 λ

�
is diagonal, then all trajectories

are half lines emanating from the origin. If A is not diagonalizable (only one linearly independent
eigenvector v1 can be found), then trajectories approach the origin tangent to v1.

If λ > 0 then the origin is an unstable node. The orbits are the same as in the stable case,
reversing the time direction.

2y

x

y

x

λ  = λ  < 0 λ  = λ  > 0
1 2 1

Left: a stable degenerate node (in the case of only one linearly independent eigenvector).
Right: an unstable degenerate node (in the case of two linearly independent eigenvectors).

Next, assume that the matrix A has complex eigenvalues: λ = α ± iβ, with β �= 0.

CASE 5 (center): If α = 0, solutions are periodic. Trajectories are ellipses (or circumferences)
centered at the origin.

CASE 6 (stable spiral point): If α < 0, trajectories are spirals converging to the origin as
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t→ +∞.

CASE 7 (unstable spiral point): If α > 0, trajectories are spirals moving away from the origin
as time increases.

λ = 

x

y y

x

y

x

λ = α 
λ = α   

+ iβ
+ i β

α > 0
α < 0

_+ iβ_

_

Left: a center. Middle: a stable spiral point. Right: an unstable spiral point.

4 - Stability for nonlinear systems

Given the differential equation on IR
n

x
� = f(x), (5)

we denote by x(t) = φ(t, y) the solution to (5) which starts at the point y ∈ IR
n:

x(0) = y . (6)

The function φ satisfies the semigroup property

φ(t + τ, y) = φ(t , φ(τ, y)) for every t, τ ≥ 0, y ∈ IR
n
.

We say that x0 ∈ IR
n is an equilibrium point if f(x0) = 0.

The point x0 is a stable equilibrium if for every ε > 0 there exists δ > 0 such that:

if |y − x0| < δ then
��φ(t, y)− x0

�� < ε for all t ≥ 0.

The point x0 is an asymptotically stable equilibrium if, in addition, for |y − x0| < δ one has

lim
t→+∞

φ(t, y) = x0 .
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ε
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ε
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0

δδ
y

asymptotically stable equilibrium

THE METHOD OF LYAPUNOV FUNCTIONS

Let x0 be an equilibrium point for the differential equation (5).
A continuously differentiable function V = V (x) defined for x in a neighborhood of x0 is a

Lyapunov function if

V (x0) = 0 and V (x) > 0 for every x �= x0 , (L1)

∇V (x) · f(x) ≤ 0 at every point x ∈ IR
n
. (L2)

Because of (L2), for every solution of the differential equation (5) we have

d

dt
V (x(t)) = ∇V (x(t)) · x�(t) = ∇V (x(t)) · f(x(t)) ≤ 0.

Hence V (x(t)) is non-increasing in time.

In case where (L2) is replaced by the stronger condition

∇V (x) · f(x) < 0 at every point x �= x0. (L2+)

then we say that V is a strict Lyapunov function. In this case, V (x(t)) is strictly decreasing
along solutions of the differential equation (except when x(t) = x0).

• If a Lyapunov function exists, then x0 is a stable equilibrium point.

• If a strict Lyapunov function exists, then x0 is an asymptotically stable equilibrium point.

• (LaSalle) If a Lyapunov function V exists, and for every initial point y �= x0 the function
t �→ V (φ(t, y)) is not a constant, then x0 is an asymptotically stable equilibrium point.

There are no general rules for constructing a Lyapunov function. Some hints:

– If the ODE models a physical system, try with V = total energy of the system.

– For the planar system (1), if (x0, y0) are the coordinates of an equilibrium point, try with
V (x, y) = a(x− x0)2 + b(y − y0)2, with suitable coefficients a, b > 0.
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THE METHOD OF LINEARIZATION

Let x0 be an equilibrium point for the differential equation (5). Compute the n× n Jacobian
matrix of f at the point x0 :

A = Df(x0) =





∂f1
∂x1

∂f1
∂x2

· · ·
∂f1
∂xn

...
...

. . .
...

∂fn

∂x1

∂fn

∂x2
· · ·

∂fn

∂xn





• If all the eigenvalues of A have strictly negative real part, then x0 is an asymptotically stable
equilibrium.

• If at least one of the eigenvalues of A has strictly positive real part, then x0 is an unstable
equilibrium point.

This method does not provide information if the eigenvalues of A have zero real part.

5 - Invariant domains

Let x(t) be a solution of the differential equation (5), defined for all t ∈ [0, +∞).
Its ω-limit set is the set

�
z ∈ IR

n ; there exists a sequence tk → +∞ such that x(tk)→ z
�
.

Note: if limt→∞ x(t) = x0 , then the ω-limit set is simply {x0}.

D
D1

D2

y

x
Left: the domain D1 is positively invariant, while D2 is not. Right: The domain D is positively invariant.

By removing a neighborhood of the strictly unstable equilibrium point, we obtain a domain which is
still positively invariant but does not contain any equilibrium point. Hence it must contain a cycle.
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A domain D ⊂ IR
2 is positively invariant for the differential equation (5) if

y ∈ D implies φ(t, y) ∈ D for all t ≥ 0.

In other words, a solution that starts in D remains in D for all times t ≥ 0. The domain D

is positively invariant provided that the velocity vector x
� = f(x) is tangent, or points toward the

interior of D, at every point x on the boundary of D.

6 - Periodic solutions

We now look again at ODEs in the plane. These are written as
�

x
� = f(x, y) ,

y
� = g(x, y).

(1)

Existence of periodic orbits.

A nontrivial periodic orbit is called a cycle.

• (Poincaré-Bendixson) Let D ⊂ IR
2 be a closed, bounded, positively invariant set. Then D

contains at least one equilibrium point or a cycle.

• In addition, assume that all equilibrium points inside D are strictly unstable, i.e. at these equilib-

rium points the Jacobian matrix
�

fx fy

gx gy

�
has eigenvalues with strictly positive real parts. Then

D contains a cycle.

Note: inside the region bounded by a periodic orbit, one can also find at least one equilibrium
point.

Non-existence of periodic orbits.

• If the system (1) has no equilibrium points, then it cannot have any cycle.

• If f(x, y) ≥ 0 for all x, y then there exists no cycle. Same conclusion if f(x, y) ≤ 0 for all x, y, or
if g(x, y) ≥ 0 for all x, y, or if g(x, y) ≤ 0 for all x, y.

• (Bendixson-Dulac) Let D ⊆ IR
2 be a convex domain in the x-y plane. Assume that we can find

a function α(x, y) such that the vector field v =
�

α(x, y)f(x, y)
α(x, y)g(x, y)

�
satisfies

div v = fx + gy > 0 at every point (x, y) ∈ Ω.

Then the domain D cannot contain any periodic orbit.

Indeed, if there exists a closed orbit γ entirely contained in the domain D, call Ω the domain
having γ as boundary. Then the divergence theorem gives a contradiction:

0 <

�

Ω
div v =

�

γ

v · n = 0.
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D

γ

v

Ω

n

Applying the divergence theorem: the vector v is tangent to the cycle γ, while n is the outer unit normal.
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