Math 411 - Ordinary Differential Equations

Review Notes - 2

1 - ODE's in the plane

An autonomous system of two ODEs has the form

$$
\left\{\begin{align*}
x^{\prime} & =f(x, y) \tag{1}\\
y^{\prime} & =g(x, y)
\end{align*}\right.
$$

We regard $(x(t), y(t))$ as the position at time t of a point moving in the plane, so that the vector $\left(x^{\prime}, y^{\prime}\right)=(f, g)$ determines its velocity. Here "autonomous" means that the functions f, g do not depend explicitly on time t.

If $t \mapsto(x(t), y(t))$ is a solution defined on a maximal interval (α, ω), then the set of points

$$
\mathcal{O}=\{(x(t), y(t)) ; \quad t \in(\alpha, \omega)\} \subset \mathbb{R}^{2}
$$

is called an orbit. A phase plane diagram for (1) is obtained by drawing orbits and equilibrium points, and marking the direction of motion along the orbits. Two methods:

- Reduce the system of two ODEs to one single scalar equation

$$
\frac{d y}{d x}=\frac{d y / d t}{d x / d t}=\frac{g(x, y)}{f(x, y)}
$$

If this equation turns out to be linear, or separable, an explicit solution can be found.

- Start by drawing null-clines, i.e. curves in the $x-y$ plane where
- either $f(x, y)=0$, so that the speed of the point (x, y) is a vertical vector: $\left(x^{\prime}, y^{\prime}\right)=(0, g(x, y))$.
- or $g(x, y)=0$, so that the speed of the point (x, y) is a horizontal vector: $\left(x^{\prime}, y^{\prime}\right)=(f(x, y), 0)$.

Then sketch the trajectories of the ODE, keeping in mind the sign of f, g in the various regions.

2 - Hamiltonian systems

The system (1) is hamiltonian if it can be written in the form

$$
\left\{\begin{array}{l}
x^{\prime}=\frac{\partial H(x, y)}{\partial y} \tag{2}\\
y^{\prime}=-\frac{\partial H(x, y)}{\partial x}
\end{array}\right.
$$

for some function $H(x, y)$. This is possible provided that

$$
\begin{equation*}
\frac{\partial}{\partial x} f(x, y)=-\frac{\partial}{\partial y} g(x, y) \tag{3}
\end{equation*}
$$

If the identity (3) holds at every point (x, y), to find a function $H(x, y)$ such that $\frac{\partial H(x, y)}{\partial y}=f(x, y)$ and $\frac{\partial H(x, y)}{\partial x}=-g(x, y)$ we proceed in two steps:

1. Regarding x as a constant, we find an antiderivative of the function $y \mapsto f(x, y)$, in the form

$$
H(x, y)=\int f(x, y) d y+k(x)
$$

This guarantees that $\frac{\partial H(x, y)}{\partial y}=f(x, y)$.
2. We then determine $k(x)$ so that H satisfies the additional relation $\frac{\partial H(x, y)}{\partial x}=-g(x, y)$.

For the Hamiltonian system (2), the function H is constant along every solution. Indeed, by the chain rule

$$
\frac{d}{d t} H(x(t), y(t))=\frac{\partial H}{\partial x} x^{\prime}(t)+\frac{\partial H}{\partial y} y^{\prime}(t)=\frac{\partial H}{\partial x} \frac{\partial H}{\partial y}+\frac{\partial H}{\partial y}\left(-\frac{\partial H}{\partial x}\right)=0
$$

The orbits of (2) are thus contained in level sets of H, i.e. sets where $H(x, y)=$ constant.

3 - Phase plane diagrams for linear systems

Consider the linear homogeneous system

$$
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{ll}
a & b \tag{4}\\
c & d
\end{array}\right)\binom{x}{y}
$$

Depending on the eigenvalues λ_{1}, λ_{2} of the matrix $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, various cases arise.
We first assume that the eigenvalues λ_{1}, λ_{2} are real and distinct. Let $\mathbf{v}_{1}, \mathbf{v}_{2}$ be corresponding eigenvectors. The general solution is thus

$$
c_{1} e^{\lambda_{1} t} \mathbf{v}_{1}+c_{2} e^{\lambda_{2} t} \mathbf{v}_{2}
$$

CASE 1 (stable node): $\lambda_{1}<\lambda_{2}<0$. As $t \rightarrow+\infty$, all trajectories flow into the origin. The component along \mathbf{v}_{1} decays faster, and trajectories are asymptotically tangent to \mathbf{v}_{2}.

CASE 2 (unstable node): $0<\lambda_{1}<\lambda_{2}$. As $t \rightarrow+\infty$, trajectories flow away from the origin, becoming arbitrarily large. For negative times, as $t \rightarrow-\infty$, the component along \mathbf{v}_{2} decays faster, and trajectories are asymptotically tangent to \mathbf{v}_{1}.

CASE 3 (saddle): $\lambda_{1}<0<\lambda_{2}$. The zero solution is unstable. As $t \rightarrow+\infty$ the component along \mathbf{v}_{1} approaches zero, while the component along \mathbf{v}_{2} becomes arbitrarily large. On the other hand, as $t \rightarrow-\infty$, the \mathbf{v}_{1}-component becomes large, while the \mathbf{v}_{2} component approaches zero.

Left: a stable node. Middle: an unstable node. Right: a saddle.

CASE 4 (degenerate node): Assume that the matrix A has a double eigenvalue $\lambda \in \mathbb{R}$.
If $\lambda<0$ then the origin is a stable node. If $A=\left(\begin{array}{ll}\lambda & 0 \\ 0 & \lambda\end{array}\right)$ is diagonal, then all trajectories are half lines emanating from the origin. If A is not diagonalizable (only one linearly independent eigenvector \mathbf{v}_{1} can be found), then trajectories approach the origin tangent to \mathbf{v}_{1}.

If $\lambda>0$ then the origin is an unstable node. The orbits are the same as in the stable case, reversing the time direction.

Left: a stable degenerate node (in the case of only one linearly independent eigenvector).
Right: an unstable degenerate node (in the case of two linearly independent eigenvectors).

Next, assume that the matrix A has complex eigenvalues: $\lambda=\alpha \pm i \beta$, with $\beta \neq 0$.
CASE 5 (center): If $\alpha=0$, solutions are periodic. Trajectories are ellipses (or circumferences) centered at the origin.

CASE 6 (stable spiral point): If $\alpha<0$, trajectories are spirals converging to the origin as
$t \rightarrow+\infty$.

CASE 7 (unstable spiral point): If $\alpha>0$, trajectories are spirals moving away from the origin as time increases.

Left: a center. Middle: a stable spiral point. Right: an unstable spiral point.

4 - Stability for nonlinear systems

Given the differential equation on \mathbb{R}^{n}

$$
\begin{equation*}
x^{\prime}=f(x), \tag{5}
\end{equation*}
$$

we denote by $x(t)=\phi(t, y)$ the solution to (5) which starts at the point $y \in \mathbb{R}^{n}$:

$$
\begin{equation*}
x(0)=y . \tag{6}
\end{equation*}
$$

The function ϕ satisfies the semigroup property

$$
\phi(t+\tau, y)=\phi(t, \phi(\tau, y)) \quad \text { for every } t, \tau \geq 0, y \in \mathbb{R}^{n}
$$

We say that $x_{0} \in \mathbb{R}^{n}$ is an equilibrium point if $f\left(x_{0}\right)=0$.
The point x_{0} is a stable equilibrium if for every $\varepsilon>0$ there exists $\delta>0$ such that:

$$
\text { if }\left|y-x_{0}\right|<\delta \quad \text { then } \quad\left|\phi(t, y)-x_{0}\right|<\varepsilon \quad \text { for all } t \geq 0
$$

The point x_{0} is an asymptotically stable equilibrium if, in addition, for $\left|y-x_{0}\right|<\delta$ one has

$$
\lim _{t \rightarrow+\infty} \phi(t, y)=x_{0}
$$

THE METHOD OF LYAPUNOV FUNCTIONS

Let x_{0} be an equilibrium point for the differential equation (5).
A continuously differentiable function $V=V(x)$ defined for x in a neighborhood of x_{0} is a

Lyapunov function if

$$
\begin{gather*}
V\left(x_{0}\right)=0 \quad \text { and } \quad V(x)>0 \quad \text { for every } \quad x \neq x_{0} \tag{L1}\\
\nabla V(x) \cdot f(x) \leq 0 \quad \text { at every point } \quad x \in \mathbb{R}^{n} . \tag{L2}
\end{gather*}
$$

Because of (L2), for every solution of the differential equation (5) we have

$$
\frac{d}{d t} V(x(t))=\nabla V(x(t)) \cdot x^{\prime}(t)=\nabla V(x(t)) \cdot f(x(t)) \leq 0
$$

Hence $V(x(t))$ is non-increasing in time.
In case where (L2) is replaced by the stronger condition

$$
\begin{equation*}
\nabla V(x) \cdot f(x)<0 \quad \text { at every point } \quad x \neq x_{0} \tag{L2+}
\end{equation*}
$$

then we say that V is a strict Lyapunov function. In this case, $V(x(t))$ is strictly decreasing along solutions of the differential equation (except when $x(t)=x_{0}$).

- If a Lyapunov function exists, then x_{0} is a stable equilibrium point.
- If a strict Lyapunov function exists, then x_{0} is an asymptotically stable equilibrium point.
- (LaSalle) If a Lyapunov function V exists, and for every initial point $y \neq x_{0}$ the function $t \mapsto V(\phi(t, y))$ is not a constant, then x_{0} is an asymptotically stable equilibrium point.

There are no general rules for constructing a Lyapunov function. Some hints:

- If the ODE models a physical system, try with $V=$ total energy of the system.
- For the planar system (1), if $\left(x_{0}, y_{0}\right)$ are the coordinates of an equilibrium point, try with $V(x, y)=a\left(x-x_{0}\right)^{2}+b\left(y-y_{0}\right)^{2}$, with suitable coefficients $a, b>0$.

THE METHOD OF LINEARIZATION

Let x_{0} be an equilibrium point for the differential equation (5). Compute the $n \times n$ Jacobian matrix of f at the point x_{0} :

$$
A=D f\left(x_{0}\right)=\left(\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_{n}}{\partial x_{1}} & \frac{\partial f_{n}}{\partial x_{2}} & \cdots & \frac{\partial f_{n}}{\partial x_{n}}
\end{array}\right)
$$

- If all the eigenvalues of A have strictly negative real part, then x_{0} is an asymptotically stable equilibrium.
- If at least one of the eigenvalues of A has strictly positive real part, then x_{0} is an unstable equilibrium point.

This method does not provide information if the eigenvalues of A have zero real part.

5 - Invariant domains

Let $x(t)$ be a solution of the differential equation (5), defined for all $t \in[0,+\infty)$.
Its ω-limit set is the set

$$
\left\{z \in \mathbb{R}^{n} ; \text { there exists a sequence } t_{k} \rightarrow+\infty \text { such that } x\left(t_{k}\right) \rightarrow z\right\} .
$$

Note: if $\lim _{t \rightarrow \infty} x(t)=x_{0}$, then the ω-limit set is simply $\left\{x_{0}\right\}$.

Left: the domain D_{1} is positively invariant, while D_{2} is not. Right: The domain D is positively invariant.
By removing a neighborhood of the strictly unstable equilibrium point, we obtain a domain which is still positively invariant but does not contain any equilibrium point. Hence it must contain a cycle.

A domain $\mathcal{D} \subset \mathbb{R}^{2}$ is positively invariant for the differential equation (5) if

$$
y \in \mathcal{D} \quad \text { implies } \quad \phi(t, y) \in \mathcal{D} \quad \text { for all } t \geq 0 .
$$

In other words, a solution that starts in \mathcal{D} remains in \mathcal{D} for all times $t \geq 0$. The domain \mathcal{D} is positively invariant provided that the velocity vector $x^{\prime}=f(x)$ is tangent, or points toward the interior of \mathcal{D}, at every point x on the boundary of \mathcal{D}.

6 - Periodic solutions

We now look again at ODEs in the plane. These are written as

$$
\left\{\begin{align*}
x^{\prime} & =f(x, y), \tag{1}\\
y^{\prime} & =g(x, y) .
\end{align*}\right.
$$

Existence of periodic orbits.

A nontrivial periodic orbit is called a cycle.

- (Poincaré-Bendixson) Let $\mathcal{D} \subset \mathbb{R}^{2}$ be a closed, bounded, positively invariant set. Then \mathcal{D} contains at least one equilibrium point or a cycle.
- In addition, assume that all equilibrium points inside \mathcal{D} are strictly unstable, i.e. at these equilibrium points the Jacobian matrix $\left(\begin{array}{cc}f_{x} & f_{y} \\ g_{x} & g_{y}\end{array}\right)$ has eigenvalues with strictly positive real parts. Then \mathcal{D} contains a cycle.

Note: inside the region bounded by a periodic orbit, one can also find at least one equilibrium point.

Non-existence of periodic orbits.

- If the system (1) has no equilibrium points, then it cannot have any cycle.
- If $f(x, y) \geq 0$ for all x, y then there exists no cycle. Same conclusion if $f(x, y) \leq 0$ for all x, y, or if $g(x, y) \geq 0$ for all x, y, or if $g(x, y) \leq 0$ for all x, y.
- (Bendixson-Dulac) Let $\mathcal{D} \subseteq \mathbb{R}^{2}$ be a convex domain in the x-y plane. Assume that we can find a function $\alpha(x, y)$ such that the vector field $\mathbf{v}=\binom{\alpha(x, y) f(x, y)}{\alpha(x, y) g(x, y)}$ satisfies

$$
\operatorname{div} \mathbf{v}=f_{x}+g_{y}>0 \quad \text { at every point }(x, y) \in \Omega
$$

Then the domain \mathcal{D} cannot contain any periodic orbit.
Indeed, if there exists a closed orbit γ entirely contained in the domain \mathcal{D}, call Ω the domain having γ as boundary. Then the divergence theorem gives a contradiction:

$$
0<\int_{\Omega} \operatorname{div} \mathbf{v}=\int_{\gamma} \mathbf{v} \cdot \mathbf{n}=0
$$

Applying the divergence theorem: the vector \mathbf{v} is tangent to the cycle γ, while \mathbf{n} is the outer unit normal.

