Second homework assignment in 18.101

1. Munkres §10, # 5

2. Munkres §10, # 6

3. Let U be an open subset of \mathbb{R}^2 and $f : U \to \mathbb{R}$ a C^2-differentiable function. Use Fubini’s theorem to prove that

$$\frac{\partial^2 f}{\partial x \partial y}(x,y) = \frac{\partial^2 f}{\partial y \partial x}(x,y)$$

4. Munkres §12, # 2

5. Munkres §12, # 3. Hint: Here are some hints about how to construct a subset, S, of Q with the properties described in the “Hint” in part c.

 a. A point, $q \in Q$ is a rational point if all its coordinates are rational numbers. Show that the set of rational points in Q is countable.

 b. Let q_1, q_2, q_3, \ldots be an enumeration of the set of rational points in Q. Show by induction that there exists a set of points, p_1, p_2, p_3, \ldots in Q such that $|p_N - q_N| < \frac{1}{N}$ and such that the coordinates of p_N are distinct from the coordinates of p_i for $i < N$.

 c. Let S be the set of p_i's.