Second homework assignment in 18.101

1. Munkres $\S 10$, \# 5
2. Munkres $\S 10, \# 6$
3. Let U be an open subset of \mathbb{R}^{2} and $f: U \rightarrow \mathbb{R}$ a C^{2}-differentiable function. Use Fubini's theorem to prove that

$$
\frac{\partial^{2} f}{\partial x \partial y}(x, y)=\frac{\partial^{2} f}{\partial y \partial x}(x, y)
$$

4. Munkres $\S 12, \# 2$
5. Munkres §12, \# 3. Hint: Here are some hints about how to construct a subset, S, of Q with the properties described in the "Hint" in part c.
a. A point, $q \in Q$ is a rational point if all its coordinates are rational numbers. Show that the set of rational points in Q is countable.
b. Let $q_{1}, q_{2}, q_{3}, \ldots$ be an enumeration of the set of rational points in Q. Show by induction that there exists a set of points, $p_{1}, p_{2}, p_{3}, \ldots$ in Q such that $\left|p_{N}-q_{N}\right|<\frac{1}{N}$ and such that the coordinates of p_{N} are distinct from the coordinates of p_{i} for $i<N$.
c. Let S be the set of p_{i} 's.
