Fifth homework assignment in 18.101 (due Friday, November 19)

- (1) Let $V_k(\mathbb{R}^n)$ be the set of all k-tuples of vectors, $\mathbf{v}_1, \ldots, \mathbf{v}_k$ in \mathbb{R}^n which are mutually orthonormal, i.e., satisfy $\langle \mathbf{v}_i, \mathbf{v}_j \rangle = \delta_{i,j}$ for $1 \leq i, j \leq k$. Show that $V_k(\mathbb{R}^n)$ is a d-dimensional manifold where $d = k \left(n \frac{k+1}{2}\right)$. Hints:
 - (a) Let $M_{k,n}$ be the set of all $k \times n$ matrices. Show that $V_k(\mathbb{R}^n)$ can be identified with the set

$$\{A \in M_{k,n} \qquad AA^t = I_k\}$$

where I_k is the identity $k \times k$ matrix.

(b) Let S_k be the set of symmetric $k \times k$ matrices and let $\phi: M_{k,n} \to S_k$ be the map, $\phi(A) = AA^t$.

Show that I_k is a regular value of this map.

Subhint: Show that $d\phi_A$ can be identified with the map

$$M_{k,n} \to S_k$$
, $B \to BA^t + AB^t$.

- (2) Lecture 8, problem 6.
- (3) Lecture 9, problems 4 and 5.
- (4) Lecture 9, problem 10.