## Fifth homework assignment in 18.101 (due Friday, November 19)

(1) Let $V_{k}\left(\mathbb{R}^{n}\right)$ be the set of all $k$-tuples of vectors, $\mathrm{v}_{1}, \ldots, \mathrm{v}_{k}$ in $\mathbb{R}^{n}$ which are mutually orthonormal, i.e., satisfy $\left\langle\mathrm{v}_{i}, \mathrm{v}_{j}\right\rangle=\delta_{i, j}$ for $1 \leq i, j \leq k$. Show that $V_{k}\left(\mathbb{R}^{n}\right)$ is a $d$-dimensional manifold where $d=k\left(n-\frac{k+1}{2}\right)$.
Hints:
(a) Let $M_{k, n}$ be the set of all $k \times n$ matrices. Show that $V_{k}\left(\mathbb{R}^{n}\right)$ can be identified with the set

$$
\left\{A \in M_{k, n} \quad A A^{t}=I_{k}\right\}
$$

where $I_{k}$ is the identity $k \times k$ matrix.
(b) Let $S_{k}$ be the set of symmetric $k \times k$ matrices and let $\phi: M_{k, n} \rightarrow S_{k}$ be the map, $\phi(A)=A A^{t}$.
Show that $I_{k}$ is a regular value of this map.
Subhint: Show that $d \phi_{A}$ can be identified with the map

$$
M_{k, n} \rightarrow S_{k}, \quad B \rightarrow B A^{t}+A B^{t}
$$

(2) Lecture 8, problem 6.
(3) Lecture 9, problems 4 and 5.
(4) Lecture 9, problem 10.

