
The theory of manifolds Lecture 3

Definition 1. The tangent space of an open set U ⊂ R
n, TU is the set of pairs

(x, v) ∈ U × R
n. This should be thought of as a vector v based at the point x ∈ U .

Denote by TpU ⊂ TU the vector space consisting of all vectors (p, v) based at the point
p. If f : R

n −→ R
m the tangent map of f is defined by

Tf : TR
n −→ TR

m

Tf(x, v) := (f(x), Df(x)v)

We also define the linear map

Tpf : TpR
n −→ Tf(p)R

m

Tpf(p, v) := (f(p), Df(p)v)

Recall that the chain theorem tells us that

T (f ◦ g) = Tf ◦ Tg

We recall that a subset, X, of R
N is an n-dimensional manifold, if, for every

p ∈ X, there exists an open set, U ⊆ R
n, a neighborhood, V , of p in R

N and a
C∞-diffeomorphism, ϕ : U → X ∩X.

Definition 2. We will call ϕ a parameterization of X at p.

Our goal in this lecture is to define the notion of the tangent space, TpX, to X at
p and describe some of its properties. Before giving our official definition we’ll discuss
some simple examples.

Example 1.

Let f : R → R be a C∞ function and let X = graphf .
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X = graph f

x
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Then in this figure above the tangent line, ℓ, to X at p0 = (x0, y0) is defined by
the equation

y − y0 = a(x− x0)

where a = f ′(x0) In other words if p is a point on ℓ then p = p0+λv0 where v0 = (1, a)
and λ ∈ R

n. We would, however, like the tangent space to X at p0 to be a subspace of
the tangent space to R

2 at p0, i.e., to be the subspace of the space: Tp0
R

2 = {p0}×R
2,

and this we’ll achieve by defining

Tp0
X = {(p0, λv0) , λ ∈ R} .

Example 2.

Let S2 be the unit 2-sphere in R
3. The tangent plane to S2 at p0 is usually defined

to be the plane
{p0 + v ; v ∈ R

3 , v ⊥ p0} .

However, this tangent plane is easily converted into a subspace of TpR
3 via the map,

p0 + v → (p0, v) and the image of this map

{(p0, v) ; v ∈ R
3 , v ⊥ p0}

will be our definition of Tp0
S2.

Let’s now turn to the general definition. As above let X be an n-dimensional
submanifold of R

N , p a point of X, V a neighborhood of p in R
N , U an open set in

R
n and

ϕ : (U, q) → (X ∩ V, p)

a parameterization of X. We can think of ϕ as a C∞ map

ϕ : (U, q) → (V, p)
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whose image happens to lie in X ∩ V and we proved last time that its derivative at q

Tqϕ : TqR
n → TpR

N (1)

is injective.

Definition 3. The tangent space, TpX, to X at p is the image of the linear map (1).
In other words, w ∈ TpR

N is in TpX if and only if w = Tqϕ(v) for some v ∈ TqR
n.

More succinctly,
TpX = Tϕ(TqR

n) . (2)

(Since Tqϕ is injective this space is an n-dimensional vector subspace of TpR
N .)

One problem with this definition is that it appears to depend on the choice of ϕ.
To get around this problem, we’ll give an alternative definition of TpX. Last time we
showed that there exists a neighborhood, V , of p in R

N (which we can without loss
of generality take to be the same as V above) and a C∞ map

f : (V, p) → (Rk, 0) , k = N − n , (3)

such that X ∩ V = f−1(0) and such that f is a submersion at all points of X ∩ V ,
and in particular at p. Thus

Tpf : TpR
N → T0R

k

is surjective, and hence the kernel of Tpf has dimension n. Our alternative definition
of TpX is

TpX = kernel Tpf . (4)

The spaces (2) and (4) are both n-dimensional subspaces of TpR
N , and we claim

that these spaces are the same. (Notice that the definition (4) of TpX doesn’t depend
on ϕ, so if we can show that these spaces are the same, the definitions (2) and (4)
will depend neither on ϕ nor on f .)

Proof. Since ϕ(U) is contained in X ∩V and X ∩V is contained in f−1(0), f ◦ϕ = 0,
so by the chain rule

Tpf ◦ Tqf = Tq(f ◦ ϕ) = 0 . (5)

Hence if v ∈ TpR
n and w = Tϕ(v), Tpf(w) = 0. This shows that the space (2)

is contained in the space (4). However, these two spaces are n-dimensional so the
coincide.

From the proof above one can extract a slightly stronger result:
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Theorem 1. Let W be an open subset of R
ℓ and h : (W, q) → (RN , p) a C∞ map.

Suppose h(W ) is contained in X. Then the image of the map

Tqh : TqR
ℓ → TpR

N

is contained in TpX.

Proof. Let f be the map (3). We can assume without loss of generality that h(W )
is contained in V , and so, by assumption, h(W ) ⊆ X ∩ V . Therefore, as above,
f ◦ h = 0, and hence Tqh(TqR

ℓ) is contained in the kernel of Tpf .

Definition 4. Define the tangent space to a manifold X ⊂ R
N , to be the subset

TX ⊂ TR
N given by

{(x, v) ⊂ TR
N so that (x, v) ∈ TxX for some x ∈ X}

Theorem 2. If X ⊂ R
N is a smooth sub manifold of R

N , then TX ⊂ TR
N is a

smooth sub manifold.

The proof of this is left as an exercise.

We shall now define the tangent map or derivative of a mapping between man-
ifolds. Explicitly: Let X be a submanifold of R

N , Y a submanifold of R
m and

g : (X, p) → (Y, y0) a C∞ map. There exists a neighborhood, O, of X in R
N and a

C∞ map, g̃ : O → R
m extending to g. We will define

Tg : TX −→ TY

to be the restriction of the map
T g̃

to T (X ∩O) ⊂ TO
(Tpg) : TpX → Ty0

Y (6)

to be the restriction of the map

Tpg̃ : TpR
N → Ty0

R
m (7)

to TpX. There are two obvious problems with this definition:

1. Is the space
Tpg̃(TpX)

contained in Ty0
Y ?

2. Does the definition depend on g̃?
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To show that the answer to 1. is yes and the answer to 2. is no, let

ϕ : (U, x0) → (X ∩ V, p)

be a parameterization of X, and let h = g̃ ◦ϕ. Since ϕ(U) ⊆ X, h(U) ⊆ Y and hence
by Theorem 2

Tx0
h(Tx0

R
n) ⊆ Ty0

Y .

But by the chain rule
Tx0

h = Tpg̃ ◦ Tx0
ϕ , (8)

so by (2)

(Tpg̃)(TpX) ⊆ TpY (9)

and

(Tpg̃)(TpX) = Tx0
h(Tx0

R
n) (10)

Thus the answer to 1. is yes, and since h = g̃ ◦ ϕ = g ◦ ϕ, the answer to 2. is no.
From (5) and (6) one easily deduces

Theorem 3 (Chain rule for mappings between manifolds). Let Z be a submanifold
of R

ℓ and ψ : (Y, y0) → (Z, z0) a C∞ map. Then Tqψ ◦ Tpg = Tp(ψ ◦ g).

Problem set

1. What is the tangent space to the quadric, x2
n = x2

1 + · · · + x2
n−1, at the point,

(1, 0, . . . , 0, 1)?

2. Show that the tangent space to the (n − 1)-sphere, Sn−1, at p, is the space of
vectors, (p, v) ∈ TpR

n satisfying p · v = 0.

3. Let f : R
n → R

k be a C∞ map and let X = graphf . What is the tangent space
to X at (a, f(a))?

4. Let σ : Sn−1 → Sn−1 be the anti-podal map, σ(x) = −x. What is the derivative
of σ at p ∈ Sn−1?

5. Let Xi ⊆ R
Ni , i = 1, 2, be an ni-dimensional manifold and let pi ∈ Xi. Define

X to be the Cartesian product

X1 ×X2 ⊆ R
N1 × R

N2

and let p = (p1, p2). Describe TpX in terms of Tp1
X1 and Tp2

X2.
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6. Let X ⊆ R
N be an n-dimensional manifold and ϕi : Ui → X∩Vi, i = 1, 2. From

these two parameterizations one gets an overlap diagram

W1 W2

X ∩ V





�ϕ1

J
JJ] ϕ2

ψ - (11)

where V = V1 ∩ V2, Wi = ϕ−1
i (X ∩ V ) and ψ = ϕ−1

2 ◦ ϕ1.

(a) Let p ∈ X ∩ V and let qi = ϕ−1
i (p). Derive from the overlap diagram (10)

an overlap diagram of linear maps

Tq1
R

n Tq2
R

n

TpR
N





�(Tϕ1) J

JĴ
(Tϕ2)

(Tψ)
- (12)

(b) Use overlap diagrams to give another proof that TpX is intrinsically de-
fined.
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