Definition 1. The tangent space of an open set $U \subset \mathbb{R}^n$, TU is the set of pairs $(x, v) \in U \times \mathbb{R}^n$. This should be thought of as a vector v based at the point $x \in U$. Denote by $T_pU \subset TU$ the vector space consisting of all vectors (p, v) based at the point p. If $f : \mathbb{R}^n \longrightarrow \mathbb{R}^m$ the tangent map of f is defined by

$$Tf:T\mathbb{R}^n\longrightarrow T\mathbb{R}^m$$

$$Tf(x,v) := (f(x), Df(x)v)$$

We also define the linear map

$$T_p f: T_p \mathbb{R}^n \longrightarrow T_{f(p)} \mathbb{R}^m$$
$$T_p f(p, v) := (f(p), Df(p)v)$$

Recall that the chain theorem tells us that

$$T(f \circ g) = Tf \circ Tg$$

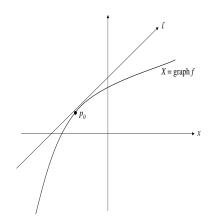
We recall that a subset, X, of \mathbb{R}^N is an *n*-dimensional manifold, if, for every $p \in X$, there exists an open set, $U \subseteq \mathbb{R}^n$, a neighborhood, V, of p in \mathbb{R}^N and a \mathcal{C}^{∞} -diffeomorphism, $\varphi: U \to X \cap X$.

Definition 2. We will call φ a parameterization of X at p.

Our goal in this lecture is to define the notion of the *tangent space*, T_pX , to X at p and describe some of its properties. Before giving our official definition we'll discuss some simple examples.

Example 1.

Let $f : \mathbb{R} \to \mathbb{R}$ be a \mathcal{C}^{∞} function and let $X = \operatorname{graph} f$.



Then in this figure above the tangent line, ℓ , to X at $p_0 = (x_0, y_0)$ is defined by the equation

$$y - y_0 = a(x - x_0)$$

where $a = f'(x_0)$ In other words if p is a point on ℓ then $p = p_0 + \lambda v_0$ where $v_0 = (1, a)$ and $\lambda \in \mathbb{R}^n$. We would, however, like the tangent space to X at p_0 to be a subspace of the tangent space to \mathbb{R}^2 at p_0 , i.e., to be the subspace of the space: $T_{p_0}\mathbb{R}^2 = \{p_0\} \times \mathbb{R}^2$, and this we'll achieve by defining

$$T_{p_0}X = \{(p_0, \lambda \mathbf{v}_0), \quad \lambda \in \mathbb{R}\}.$$

Example 2.

Let S^2 be the unit 2-sphere in \mathbb{R}^3 . The tangent plane to S^2 at p_0 is usually defined to be the plane

$$\{p_0 + \mathbf{v} \, ; \, \mathbf{v} \in \mathbb{R}^3 \, , \quad \mathbf{v} \perp p_0\} \, .$$

However, this tangent plane is easily converted into a subspace of $T_p \mathbb{R}^3$ via the map, $p_0 + \mathbf{v} \to (p_0, \mathbf{v})$ and the image of this map

$$\{(p_0, \mathbf{v}) \, ; \, \mathbf{v} \in \mathbb{R}^3 \, , \quad \mathbf{v} \perp p_0\}$$

will be our definition of $T_{p_0}S^2$.

Let's now turn to the general definition. As above let X be an n-dimensional submanifold of \mathbb{R}^N , p a point of X, V a neighborhood of p in \mathbb{R}^N , U an open set in \mathbb{R}^n and

$$\varphi: (U,q) \to (X \cap V,p)$$

a parameterization of X. We can think of φ as a \mathcal{C}^{∞} map

$$\varphi: (U,q) \to (V,p)$$

whose image happens to lie in $X \cap V$ and we proved last time that its derivative at q

$$T_q \varphi : T_q \mathbb{R}^n \to T_p \mathbb{R}^N \tag{1}$$

is injective.

Definition 3. The tangent space, T_pX , to X at p is the image of the linear map (1). In other words, $w \in T_p\mathbb{R}^N$ is in T_pX if and only if $w = T_q\varphi(v)$ for some $v \in T_q\mathbb{R}^n$. More succinctly,

$$T_p X = T\varphi(T_q \mathbb{R}^n) \,. \tag{2}$$

(Since $T_q \varphi$ is injective this space is an n-dimensional vector subspace of $T_p \mathbb{R}^N$.)

One problem with this definition is that it appears to depend on the choice of φ . To get around this problem, we'll give an alternative definition of T_pX . Last time we showed that there exists a neighborhood, V, of p in \mathbb{R}^N (which we can without loss of generality take to be the same as V above) and a \mathcal{C}^{∞} map

$$f: (V, p) \to (\mathbb{R}^k, 0), \quad k = N - n, \qquad (3)$$

such that $X \cap V = f^{-1}(0)$ and such that f is a submersion at all points of $X \cap V$, and in particular at p. Thus

$$T_p f: T_p \mathbb{R}^N \to T_0 \mathbb{R}^k$$

is surjective, and hence the kernel of $T_p f$ has dimension n. Our alternative definition of $T_p X$ is

$$T_p X = \text{kernel } T_p f \,. \tag{4}$$

The spaces (2) and (4) are both *n*-dimensional subspaces of $T_p \mathbb{R}^N$, and we claim that these spaces are the same. (Notice that the definition (4) of $T_p X$ doesn't depend on φ , so if we can show that these spaces are the same, the definitions (2) and (4) will depend *neither* on φ nor on f.)

Proof. Since $\varphi(U)$ is contained in $X \cap V$ and $X \cap V$ is contained in $f^{-1}(0)$, $f \circ \varphi = 0$, so by the chain rule

$$T_p f \circ T_q f = T_q (f \circ \varphi) = 0.$$
⁽⁵⁾

Hence if $\mathbf{v} \in T_p \mathbb{R}^n$ and $w = T\varphi(\mathbf{v}), T_p f(w) = 0$. This shows that the space (2) is contained in the space (4). However, these two spaces are *n*-dimensional so the coincide.

From the proof above one can extract a slightly stronger result:

Theorem 1. Let W be an open subset of \mathbb{R}^{ℓ} and $h : (W,q) \to (\mathbb{R}^N,p)$ a \mathcal{C}^{∞} map. Suppose h(W) is contained in X. Then the image of the map

$$T_qh: T_q\mathbb{R}^\ell \to T_p\mathbb{R}^N$$

is contained in T_pX .

Proof. Let f be the map (3). We can assume without loss of generality that h(W) is contained in V, and so, by assumption, $h(W) \subseteq X \cap V$. Therefore, as above, $f \circ h = 0$, and hence $T_{q}h(T_{q}\mathbb{R}^{\ell})$ is contained in the kernel of $T_{p}f$.

Definition 4. Define the tangent space to a manifold $X \subset \mathbb{R}^N$, to be the subset $TX \subset T\mathbb{R}^N$ given by

$$\{(x,v) \subset T\mathbb{R}^N \text{ so that } (x,v) \in T_xX \text{ for some } x \in X\}$$

Theorem 2. If $X \subset \mathbb{R}^N$ is a smooth sub manifold of \mathbb{R}^N , then $TX \subset T\mathbb{R}^N$ is a smooth sub manifold.

The proof of this is left as an exercise.

We shall now define the tangent map or *derivative* of a mapping between manifolds. Explicitly: Let X be a submanifold of \mathbb{R}^N , Y a submanifold of \mathbb{R}^m and $g: (X, p) \to (Y, y_0) \in \mathcal{C}^\infty$ map. There exists a neighborhood, \mathcal{O} , of X in \mathbb{R}^N and a \mathcal{C}^∞ map, $\tilde{g}: \mathcal{O} \to \mathbb{R}^m$ extending to g. We will define

$$Tg:TX\longrightarrow TY$$

to be the restriction of the map

 $T\tilde{g}$

to $T(X \cap \mathcal{O}) \subset T\mathcal{O}$

$$(T_pg): T_pX \to T_{y_0}Y \tag{6}$$

to be the restriction of the map

$$T_p \tilde{g} : T_p \mathbb{R}^N \to T_{y_0} \mathbb{R}^m \tag{7}$$

to T_pX . There are two obvious problems with this definition:

(

1. Is the space

 $T_p \tilde{g}(T_p X)$

contained in $T_{y_0}Y$?

2. Does the definition depend on \tilde{g} ?

To show that the answer to 1. is yes and the answer to 2. is no, let

$$\varphi: (U, x_0) \to (X \cap V, p)$$

be a parameterization of X, and let $h = \tilde{g} \circ \varphi$. Since $\varphi(U) \subseteq X$, $h(U) \subseteq Y$ and hence by Theorem 2

$$T_{x_0}h(T_{x_0}\mathbb{R}^n) \subseteq T_{y_0}Y$$
.

But by the chain rule

$$T_{x_0}h = T_p \tilde{g} \circ T_{x_0} \varphi \,, \tag{8}$$

so by (2)

$$(T_p \tilde{g})(T_p X) \subseteq T_p Y \tag{9}$$

and

$$(T_p \tilde{g})(T_p X) = T_{x_0} h(T_{x_0} \mathbb{R}^n)$$
(10)

Thus the answer to 1. is yes, and since $h = \tilde{g} \circ \varphi = g \circ \varphi$, the answer to 2. is no. From (5) and (6) one easily deduces

Theorem 3 (Chain rule for mappings between manifolds). Let Z be a submanifold of \mathbb{R}^{ℓ} and $\psi : (Y, y_0) \to (Z, z_0)$ a \mathcal{C}^{∞} map. Then $T_q \psi \circ T_p g = T_p(\psi \circ g)$.

Problem set

- 1. What is the tangent space to the quadric, $x_n^2 = x_1^2 + \cdots + x_{n-1}^2$, at the point, $(1, 0, \ldots, 0, 1)$?
- 2. Show that the tangent space to the (n-1)-sphere, S^{n-1} , at p, is the space of vectors, $(p, \mathbf{v}) \in T_p \mathbb{R}^n$ satisfying $p \cdot \mathbf{v} = 0$.
- 3. Let $f : \mathbb{R}^n \to \mathbb{R}^k$ be a \mathcal{C}^{∞} map and let $X = \operatorname{graph} f$. What is the tangent space to X at (a, f(a))?
- 4. Let $\sigma: S^{n-1} \to S^{n-1}$ be the anti-podal map, $\sigma(x) = -x$. What is the derivative of σ at $p \in S^{n-1}$?
- 5. Let $X_i \subseteq \mathbb{R}^{N_i}$, i = 1, 2, be an n_i -dimensional manifold and let $p_i \in X_i$. Define X to be the Cartesian product

$$X_1 \times X_2 \subseteq \mathbb{R}^{N_1} \times \mathbb{R}^{N_2}$$

and let $p = (p_1, p_2)$. Describe $T_p X$ in terms of $T_{p_1} X_1$ and $T_{p_2} X_2$.

6. Let $X \subseteq \mathbb{R}^N$ be an *n*-dimensional manifold and $\varphi_i : U_i \to X \cap V_i, i = 1, 2$. From these two parameterizations one gets an overlap diagram

where $V = V_1 \cap V_2$, $W_i = \varphi_i^{-1}(X \cap V)$ and $\psi = \varphi_2^{-1} \circ \varphi_1$.

(a) Let $p \in X \cap V$ and let $q_i = \varphi_i^{-1}(p)$. Derive from the overlap diagram (10) an overlap diagram of linear maps

$$(T\varphi_1) \xrightarrow{T_p \mathbb{R}^N} (T\varphi_2)$$

$$T_{q_1} \mathbb{R}^n \xrightarrow{(T\psi)} T_{q_2} \mathbb{R}^n$$
(12)

(b) Use overlap diagrams to give another proof that T_pX is intrinsically defined.