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a

Recall from problem set 8 that if f : [0,∞) −→ [0,∞) is a continuous, strictly increasing function
and f(0) = 0 then ∫ u

0
f(t)dt+

∫ v

0
f−1(t)dt ≥ uv

with equality if and only if f(u) = v.

Let p, q be strictly positive real numbers such that 1/p+ 1/q = 1. Multiplying by pq gives

p+ q = pq =⇒ (p− 1)(q − 1) = pq − p− q + 1 = 1.

Thus defining f : [0,∞) −→ [0,∞) by f(t) = tp−1, f−1 : [0,∞) −→ [0,∞) is given by f(t) = tq−1

and since f is continuous and strictly increasing we obtain∫ u

0
tp−1dt+

∫ v

0
tq−1dt ≥ uv.

with equality if and only if up−1 = v. Noting that

up−1 = v ⇐⇒ up = uq(p−1) = vq

and using the Fundamental Theorem of Calculus, we’re done.

b

Let f, g ∈ R(α) with f, g ≥ 0. Then applying part (a) pointwise we obtain

fg ≤ fp

p
+
gq

q

fp, gq ∈ R(α) by theorem 6.11 and theorem 6.12a)b) gives∫ b

a
fgdα ≤ 1

p

∫ b

a
fpdα+

1

q

∫ b

a
gqdα.
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c

For f, g ∈ R(α), |f |p, |g|q ∈ R(α) by theorems 6.13b) and 6.11. Let ‖f‖Lp =
(∫ b

a |f |
pdα

) 1
p
. If

‖f‖Lp and ‖g‖Lq are non-zero then∫ b

a

(
|f |/‖f‖Lp

)p
dα = 1 =

∫ b

a

(
|g|/‖g‖Lq

)q
dα

So by (b), ∫ b

a

∣∣∣∣ fg

‖f‖Lp‖g‖Lq

∣∣∣∣ ≤ 1

giving ∣∣∣∣∫ b

a
fgdα

∣∣∣∣ ≤ ∫ b

a
|fg|dα ≤ ‖f‖Lp‖g‖Lq .

Suppose ‖f‖Lp = 0 and let c > 0. Part (a) gives

c|fg| ≤ |f |
p

p
+
cq|g|q

q

and thus ∣∣∣∣∫ b

a
fgdα

∣∣∣∣ ≤ ∫ b

a
|fg|dα ≤ cq−1

∫ b

a

|g|q

q
dα.

Letting c −→ 0 gives
∣∣∣∫ ba fgdα∣∣∣ = 0 because q > 1. Thus the inequality remains valid. Similarly, it

remains valid if ‖g‖Lq = 0.

2

Let x > 0, let n ∈ N∪{0}, and let f : [0, x] −→ R be n+1 times differentiable with f (n+1) integrable.

First note that for m ≤ n, f (m) is differentiable, hence continuous, hence integrable. Thus f (m) is
integrable whenever m ≤ n+ 1 and so for m ≤ n

Im(x) =
xm+1

m!

∫ 1

0
(1− t)mf (m+1)(tx)dt =

1

m!

∫ x

0
(x− y)mf (m+1)(y)dy

makes sense, the equality between the integrals coming from making the substitution y = tx.

By the fundamental theorem of calculus we have

I0(x) =

∫ x

0
f ′(y)dy = f(x)− f(0) =⇒ f(x) = f(0) + I0(x).

Suppose inductively that for 0 < m ≤ n we have

f(x) = f(0) + f ′(0) + f ′′(0)x+ . . .+
f (m−1)(0)

(m− 1)!
xm−1 + Im−1(x).
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We would like to show that

f(x) = f(0) + f ′(0) + f ′′(0)x+ . . .+
f (m)(0)

m!
xm + Im(x)

and for this it is enough to show

Im−1(x) =
f (m)(0)

m!
xm + Im(x).

This follows from theorem 6.22 with F (y) = (x−y)m
m! and G(y) = f (m)(y).

3

Let F (x) = xf(x) and G(x) = f(x). Then theorem 6.22 (everything in sight is bounded and
continuous and hence integrable by theorem 6.8) gives∫ b

a
xf(x)f ′(x)dx = −

∫ b

a
(f(x) + xf ′(x))f(x)dx = −

∫ b

a
f(x)2dx−

∫ b

a
xf(x)f ′(x)dx

=⇒
∫ b

a
xf(x)f ′(x)dx = −1

2

∫ b

a
f(x)2dx = −1

2

Applying 1)c) with p = q = 2 we obtain

1

4
=

(∫ b

a
xf(x)f ′(x)dx

)2

≤
∫ b

a
f ′(x)2dx

∫ b

a
x2f(x)2dx.

If equality holds then f ′(x) = λxf(x) for some λ. Let g(x) = f(x)e−λx
2/2. Thus

g′(x) = f ′(x)e−λx
2/2 − λxf(x)e−λx

2/2 = 0.

By theorem 5.11)b), g is constant. Thus f(x) = Ce−λx
2/2 for some constant C. Since f(a) =

f(b) = 0, C = 0 and thus f = 0. But ∫ b

a
f(x)2dx = 1.

We have a contradiction and so the inequality is strict.

4

Suppose (fn) and (gn) converge uniformly on some set E. Let their respective limits be f and g
and let ε > 0. There exist N1, N2 ∈ N such that

n ≥ N1 =⇒ |fn(x)− f(x)| ≤ ε/2 for all x ∈ E

and
n ≥ N2 =⇒ |gn(x)− g(x)| ≤ ε/2 for all x ∈ E.
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Let N = max{N1, N2}. Then

n ≥ N =⇒ |(fn + gn)(x)− (f + g)x)| ≤ |fn(x)− f(x)|+ |gn(x)− g(x)| ≤ ε, for all x ∈ E.

Thus (fn + gn) converges uniformly on E.

Suppose in addition that (fn) and (gn) are sequences of bounded functions. Then there exists
M1,M2 ∈ N such that |fN1(x)| ≤M1 − ε/2 and |gN1(x)| ≤M2 − ε/2 for all x ∈ E. Thus

|f(x)| ≤ |f(x)− fN1(x)|+ |fN1(x)| ≤M1

and
|g(x)| ≤ |g(x)− gN2(x)|+ |gN2(x)| ≤M2

for all x ∈ E. Thus, for any n ∈ N and x ∈ E,

|(fngn)(x)− (fg)(x)| ≤ |fn(x)||gn(x)− g(x)|+ |fn(x)− f(x)||g(x)|
≤ |fn(x)− f(x)||gn(x)− g(x)|+ |f(x)||gn(x)− g(x)|+ |fn(x)− f(x)||g(x)|
≤ |fn(x)− f(x)||gn(x)− g(x)|+M1|gn(x)− g(x)|+M2|fn(x)− f(x)|

Given δ > 0, choose Ñ1, Ñ2 ∈ N such that

n ≥ Ñ1 =⇒ |fn(x)− f(x)| ≤ min{δ, 1}/(3M2) for all x ∈ E

and
n ≥ Ñ2 =⇒ |gn(x)− g(x)| ≤ δ/(3M1) for all x ∈ E.

Let Ñ = max{Ñ1, Ñ2}. Then

n ≥ Ñ =⇒ |(fngn)(x)− (fg)(x)| ≤ δ for all x ∈ E.

Thus (fngn) converges uniformly on E.

5

For each n ∈ N define fn : R −→ R, x 7−→ x+ 1/n and define f : R −→ R, x 7−→ x.

Let ε > 0 and choose N > 1/ε. Then n ≥ N implies |fn(x) − f(x)| < ε for all x ∈ R so that
(fn) converges uniformly to f on R.

Let gn = fn and g = f . Pointwise fngn −→ fg so that if (fngn) were to convergence uniformly
there would exist an N ∈ N such that

n ≥ N =⇒ |(fngn)(x)− (fg)(x)| ≤ 1 for all x ∈ R.

However,
(fngn)(x)− (fg)(x) = (x+ 1/n)2 − x2 = 2x/n+ 1/n2

so that
|(fngn)(n)− (fg)(n)| ≥ 2.
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6

Let f : [0, 1] −→ [0, 1] be continuously differentiable with nonincreasing derivative and with f(0) =
f(1) = 0. The graph of f gives an arc in [0, 1]2:

γ : [0, 1] −→ [0, 1]2, t 7−→ (t, f(t))

γ is continuously differentiable with

γ′ : [0, 1] −→ R2, t 7−→ (1, f ′(t)).

By theorem 6.27 the arc length of γ is given by∫ 1

0
|γ′(t)|dt =

∫ 1

0

√
1 + f ′(t)2dt.

The Cauchy-Schwartz inequality proved on an earlier sheet gives
√

1 + f ′(t)2 ≤ 1 + |f ′(t)|. So that
the length of γ is bounded by ∫ 1

0
1 + |f ′(t)|dt.

If f ′(t) > 0 for all t ∈ [0, 1] question 4 from sheet 8 and the Fundamental Theorem of Calculus give

f(1)− f(0) =

∫ 1

0
f ′(t)dt > 0,

a contradiction. So {t ∈ [0, 1] : f ′(t) ≤ 0} 6= ∅. Similarly, {t ∈ [0, 1] : f ′(t) ≥ 0} 6= ∅. Since f ′

is continuous the intermediate value theorem gives an a ∈ [0, 1] such that f ′(a) = 0. Since f ′ is
non-increasing f ′(x) ≥ 0 on [0, a] and f ′(x) ≤ 0 on [a, 1]. Thus the fundamental theorem of calculus
gives∫ 1

0
1 + |f ′(t)|dt = 1 +

∫ a

0
f ′(t)dt−

∫ 1

a
f ′(t)dt = 1 + (f(a)− f(0))− (f(1)− f(a)) = 1 + 2f(a) ≤ 3.
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