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1

a

Recall from problem set 8 that if f : [0,00) — [0, 00) is a continuous, strictly increasing function

and f(0) = 0 then
/f dt+/f £)dt > uw

Let p, ¢ be strictly positive real numbers such that 1/p 4+ 1/¢ = 1. Multiplying by pq gives

with equality if and only if f(u)

p+q=pg = (p—1)(¢—1)=pg—p—q+1=1

Thus defining f : [0,00) — [0,00) by f(t) = t?~L, f=1:[0,00) — [0, 00) is given by f(t) = ti~1
and since f is continuous and strictly increasing we obtain

u v
/tpldt+/ tdt > uw.
0 0

with equality if and only if «P~! = v. Noting that

-1

Wl =y = uP = 2P = g8

and using the Fundamental Theorem of Calculus, we’re done.

b
Let f,g € Z(a) with f,g > 0. Then applying part (a) pointwise we obtain
q
fg<— "L
p q

fP, 9% € Z(a) by theorem 6.11 and theorem 6.12a)b) gives

/fgda< /fpda—i— / glda.



C

1
For f,g € Z(«a), |fIP,]9|? € Z(a) by theorems 6.13b) and 6.11. Let | f||z, = (ff|f|pdoz)p. If

| fllz, and [|g||L, are non-zero then

/ab (IF1/1£1lz,)" da =1 = /ab (191/llgll2.)" da
/ab
/abfgdoc

Suppose || f||z, = 0 and let ¢ > 0. Part (a) gives

P ol|gl?
17 el
p q

b b q
g/ |fglda < qu/ @da.
a a q

= 0 because ¢ > 1. Thus the inequality remains valid. Similarly, it

So by (b),
fg

—_Jg 1<
£z, lgllz,

giving

b
< / Folda < I 1lz, 9z,

clfgl <

and thus

/a ' fgdo

Letting ¢ — 0 gives )f; fgdo

remains valid if ||g||z, = 0.

2

Let z > 0, let n € NU{0}, and let f : [0, 2] — R be n+1 times differentiable with f("*1) integrable.

First note that for m < n, f(™ is differentiable, hence continuous, hence integrable. Thus f(™) is
integrable whenever m < n 4+ 1 and so for m <n

J;m—i—l

In(z) =

/ (1= gy o) (g — / S~y e ()
) X —m! ) r—y y)ay

m!

makes sense, the equality between the integrals coming from making the substitution y = tx.

By the fundamental theorem of calculus we have

0@) = [ 1)y = 1) = 10) = §(@) = F0) + Tole).
Suppose inductively that for 0 < m < n we have

(m—1)
f(x)=£0)+ f(0)+ f(0)x+...+ f(m_l()(]!)mml + Lp—1(z).



We would like to show that

f(z) = £0)+ f(0) + f"(0)z + ...+

and for this it is enough to show

0
I—1(z) = — "+ L (x).

This follows from theorem 6.22 with F(y) = (m;%)m and G(y) = f(™(y).

3

Let F(x) = zf(x) and G(x) = f(z). Then theorem 6.22 (everything in sight is bounded and
continuous and hence integrable by theorem 6.8) gives

AZﬂMfWsz—/7ﬂ>+am / f dm—ﬁa¢<v<>

=>/xf —;/Gf()da:—;

Applying 1)c) with p = ¢ = 2 we obtain

i:(/aazf( > /f dm/ 2f(x)?dz.

If equality holds then f'(z) = Az.f(z) for some A. Let g(z) = f(z)e >**/2. Thus
g(@) = f@)e ™ —haf(a)e ™/ =0.

By theorem 5.11)b), g is constant. Thus f(z) = Ce >**/2 for some constant C. Since f(a) =
f(b) =0, C =0 and thus f = 0. But
b
/ f(z)%dz = 1.

We have a contradiction and so the inequality is strict.

4

Suppose (f,) and (gn) converge uniformly on some set E. Let their respective limits be f and g
and let € > 0. There exist Ny, No € N such that

n>N = |fo(z) — f(z)| <e€/2 forallze E

and
n> Ny = |gn(z) —g(z)| < €/2 forall z € E.



Let N = max{Nj, No}. Then
RN = |(fat 92)(®) — (f + 9)2) < 1fal@) — F@)] +lgn(z) — 9(z)| <&, for all z € E.

Thus (fn + gn) converges uniformly on E.

Suppose in addition that (f,) and (g,) are sequences of bounded functions. Then there exists
My, My € N such that |fn, (z)] < M1 —€/2 and |gn, (x)| < M3 —¢/2 for all x € E. Thus

[f(@)| < 1f(2) = vy ()] + [ ()] < My

and
()| < lg(x) — gy ()] + gy (2)] < Mo
for all x € E. Thus, for any n € Nand z € F,

[(Fngn) (@) = (f9)(@)| < |fu(2)llgn(z) — g(2)| + [fn(z) — f(2)[|g(2)]
< | fa(@) = F@)llgn(x) — g(@)| + |f(@)llgn(2) — 9(2)| + [fu(z) — f(2)]lg(z)]
< |fu(@) = f(@)llgn(x) — g(x)| + Mi|gn(z) — g(x)| + Ma|fn(z) — f(z)|

Given 8 > 0, choose N1, Ny € N such that

n>N, = |fo(z) — f(z)| <min{d,1}/(3M;) for all z € E

and
n> Ny = |gn(z) — g(z)| <5/(3M;) for all z € E.

Let N = max{Nj, No}. Then
n>N = |(fugn)(@) — (fg)(z)| <§ forall z € E.

Thus (fngn) converges uniformly on E.

5

For each n € N define f,, : R — R,  —— 2 + 1/n and define f : R — R, z — .

Let € > 0 and choose N > 1/e. Then n > N implies |f,(x) — f(z)| < € for all z € R so that
(fn) converges uniformly to f on R.

Let g, = fn and g = f. Pointwise f,g, — fg so that if (f,g,) were to convergence uniformly
there would exist an N € N such that

n>N = |(fugn)(x) — (fg)(x)| <1 for all z € R.

However,
(fagn)(@) = (f9)(x) = (z +1/n)* —a® = 2x/n+ 1/n?
so that
|(fagn)(n) = (fg)(n)| = 2.



6

Let f :[0,1] — [0, 1] be continuously differentiable with nonincreasing derivative and with f(0) =
f(1) = 0. The graph of f gives an arc in [0, 1]?:

7:[0,1] — [0,1%, ¢ — (L, £(1))
v is continuously differentiable with
/7, : [0’ 1] — R2a t— (17f,(t))'

By theorem 6.27 the arc length of v is given by

1 1
/0 /(1) dt = /0 N

The Cauchy-Schwartz inequality proved on an earlier sheet gives \/1 + f/(t)2 < 1+ |f'(t)|. So that
the length of v is bounded by

1
/0 1L+ |f'(¢)]dt.

If f'(t) > 0 for all t € [0, 1] question 4 from sheet 8 and the Fundamental Theorem of Calculus give
1
£0) =10 = [ vyt >o,
0
a contradiction. So {t € [0,1] : f'(t) < 0} # 0. Similarly, {¢t € [0,1] : f'(¢t) > 0} # (. Since f’
is continuous the intermediate value theorem gives an a € [0,1] such that f’(a) = 0. Since f’ is

non-increasing f’'(z) > 0 on [0,a] and f’(z) < 0 on [a, 1]. Thus the fundamental theorem of calculus
gives

1 a 1
/ L (f))dt =1+ / F(t)dt - / (0t =1+ (f(a) — £0)) — (F(1) — f(a) = 1 +2f(a) < 3.
0 0 a



	
	
	
	
	
	

