Problem Set 9, 18.100B/C, Fall 2011

Michael Andrews Department of Mathematics MIT

November 30, 2011

1

a

Recall from problem set 8 that if $f : [0, \infty) \longrightarrow [0, \infty)$ is a continuous, strictly increasing function and $f(0) = 0$ then

$$
\int_0^u f(t)dt + \int_0^v f^{-1}(t)dt \ge uv
$$

with equality if and only if $f(u) = v$.

Let p, q be strictly positive real numbers such that $1/p + 1/q = 1$. Multiplying by pq gives

 $p + q = pq \implies (p-1)(q-1) = pq - p - q + 1 = 1.$

Thus defining $f : [0, \infty) \longrightarrow [0, \infty)$ by $f(t) = t^{p-1}$, $f^{-1} : [0, \infty) \longrightarrow [0, \infty)$ is given by $f(t) = t^{q-1}$ and since f is continuous and strictly increasing we obtain

$$
\int_0^u t^{p-1} dt + \int_0^v t^{q-1} dt \ge uv.
$$

with equality if and only if $u^{p-1} = v$. Noting that

$$
u^{p-1} = v \iff u^p = u^{q(p-1)} = v^q
$$

and using the Fundamental Theorem of Calculus, we're done.

b

Let $f, g \in \mathcal{R}(\alpha)$ with $f, g \geq 0$. Then applying part (a) pointwise we obtain

$$
fg \leq \frac{f^p}{p} + \frac{g^q}{q}
$$

 $f^p, g^q \in \mathcal{R}(\alpha)$ by theorem 6.11 and theorem 6.12a)b) gives

$$
\int_a^b fg d\alpha \le \frac{1}{p} \int_a^b f^p d\alpha + \frac{1}{q} \int_a^b g^q d\alpha.
$$

For $f, g \in \mathscr{R}(\alpha)$, $|f|^p, |g|^q \in \mathscr{R}(\alpha)$ by theorems 6.13b) and 6.11. Let $||f||_{L_p} = \left(\int_a^b |f|^p d\alpha\right)^{\frac{1}{p}}$. If $||f||_{L_p}$ and $||g||_{L_q}$ are non-zero then

$$
\int_{a}^{b} (|f|/||f||_{L_p})^p d\alpha = 1 = \int_{a}^{b} (|g|/||g||_{L_q})^q d\alpha
$$

So by (b) ,

$$
\int_a^b \left| \frac{fg}{\|f\|_{L_p} \|g\|_{L_q}} \right| \le 1
$$

giving

$$
\left|\int_a^b fg d\alpha\right| \leq \int_a^b |fg| d\alpha \leq ||f||_{L_p} ||g||_{L_q}.
$$

Suppose $||f||_{L_p} = 0$ and let $c > 0$. Part (a) gives

$$
c|fg|\leq \frac{|f|^p}{p}+\frac{c^q|g|^q}{q}
$$

and thus

$$
\left| \int_a^b fg d\alpha \right| \leq \int_a^b |fg| d\alpha \leq c^{q-1} \int_a^b \frac{|g|^q}{q} d\alpha.
$$

Letting $c \longrightarrow 0$ gives $\Big|$ $\int_a^b fg d\alpha$ $= 0$ because $q > 1$. Thus the inequality remains valid. Similarly, it remains valid if $||g||_{L_q} = 0$.

2

Let $x > 0$, let $n \in \mathbb{N} \cup \{0\}$, and let $f : [0, x] \longrightarrow \mathbb{R}$ be $n+1$ times differentiable with $f^{(n+1)}$ integrable.

First note that for $m \leq n$, $f^{(m)}$ is differentiable, hence continuous, hence integrable. Thus $f^{(m)}$ is integrable whenever $m \leq n+1$ and so for $m \leq n$

$$
I_m(x) = \frac{x^{m+1}}{m!} \int_0^1 (1-t)^m f^{(m+1)}(tx) dt = \frac{1}{m!} \int_0^x (x-y)^m f^{(m+1)}(y) dy
$$

makes sense, the equality between the integrals coming from making the substitution $y = tx$.

By the fundamental theorem of calculus we have

$$
I_0(x) = \int_0^x f'(y) dy = f(x) - f(0) \implies f(x) = f(0) + I_0(x).
$$

Suppose inductively that for $0 < m \leq n$ we have

$$
f(x) = f(0) + f'(0) + f''(0)x + \ldots + \frac{f^{(m-1)}(0)}{(m-1)!}x^{m-1} + I_{m-1}(x).
$$

We would like to show that

$$
f(x) = f(0) + f'(0) + f''(0)x + \ldots + \frac{f^{(m)}(0)}{m!}x^{m} + I_{m}(x)
$$

and for this it is enough to show

$$
I_{m-1}(x) = \frac{f^{(m)}(0)}{m!}x^{m} + I_{m}(x).
$$

This follows from theorem 6.22 with $F(y) = \frac{(x-y)^m}{m!}$ and $G(y) = f^{(m)}(y)$.

3

Let $F(x) = xf(x)$ and $G(x) = f(x)$. Then theorem 6.22 (everything in sight is bounded and continuous and hence integrable by theorem 6.8) gives

$$
\int_{a}^{b} xf(x)f'(x)dx = -\int_{a}^{b} (f(x) + xf'(x))f(x)dx = -\int_{a}^{b} f(x)^{2}dx - \int_{a}^{b} xf(x)f'(x)dx
$$

$$
\implies \int_{a}^{b} xf(x)f'(x)dx = -\frac{1}{2}\int_{a}^{b} f(x)^{2}dx = -\frac{1}{2}
$$

Applying 1)c) with $p = q = 2$ we obtain

$$
\frac{1}{4} = \left(\int_a^b x f(x) f'(x) dx\right)^2 \le \int_a^b f'(x)^2 dx \int_a^b x^2 f(x)^2 dx.
$$

If equality holds then $f'(x) = \lambda x f(x)$ for some λ . Let $g(x) = f(x)e^{-\lambda x^2/2}$. Thus

$$
g'(x) = f'(x)e^{-\lambda x^2/2} - \lambda x f(x)e^{-\lambda x^2/2} = 0.
$$

By theorem 5.11)b), g is constant. Thus $f(x) = Ce^{-\lambda x^2/2}$ for some constant C. Since $f(a) =$ $f(b) = 0, C = 0$ and thus $f = 0$. But

$$
\int_a^b f(x)^2 dx = 1.
$$

We have a contradiction and so the inequality is strict.

4

Suppose (f_n) and (g_n) converge uniformly on some set E. Let their respective limits be f and g and let $\epsilon > 0$. There exist $N_1, N_2 \in \mathbb{N}$ such that

$$
n \ge N_1 \implies |f_n(x) - f(x)| \le \epsilon/2 \text{ for all } x \in E
$$

and

$$
n \ge N_2 \implies |g_n(x) - g(x)| \le \epsilon/2 \text{ for all } x \in E
$$

Let $N = \max\{N_1, N_2\}$. Then

$$
n \ge N \implies |(f_n + g_n)(x) - (f + g)x)| \le |f_n(x) - f(x)| + |g_n(x) - g(x)| \le \epsilon, \text{ for all } x \in E.
$$

Thus $(f_n + g_n)$ converges uniformly on E.

Suppose in addition that (f_n) and (g_n) are sequences of bounded functions. Then there exists $M_1, M_2 \in \mathbb{N}$ such that $|f_{N_1}(x)| \leq M_1 - \epsilon/2$ and $|g_{N_1}(x)| \leq M_2 - \epsilon/2$ for all $x \in E$. Thus

$$
|f(x)| \le |f(x) - f_{N_1}(x)| + |f_{N_1}(x)| \le M_1
$$

and

$$
|g(x)| \le |g(x) - g_{N_2}(x)| + |g_{N_2}(x)| \le M_2
$$

for all $x \in E$. Thus, for any $n \in \mathbb{N}$ and $x \in E$,

$$
|(f_ng_n)(x) - (fg)(x)| \le |f_n(x)||g_n(x) - g(x)| + |f_n(x) - f(x)||g(x)|
$$

\n
$$
\le |f_n(x) - f(x)||g_n(x) - g(x)| + |f(x)||g_n(x) - g(x)| + |f_n(x) - f(x)||g(x)|
$$

\n
$$
\le |f_n(x) - f(x)||g_n(x) - g(x)| + M_1|g_n(x) - g(x)| + M_2|f_n(x) - f(x)|
$$

Given $\delta > 0$, choose $\tilde{N}_1, \tilde{N}_2 \in \mathbb{N}$ such that

$$
n \ge \tilde{N}_1 \implies |f_n(x) - f(x)| \le \min\{\delta, 1\}/(3M_2) \text{ for all } x \in E
$$

and

$$
n \ge \tilde{N}_2 \implies |g_n(x) - g(x)| \le \delta/(3M_1) \text{ for all } x \in E.
$$

Let $\tilde{N} = \max{\{\tilde{N}_1, \tilde{N}_2\}}$. Then

$$
n \ge \tilde{N} \implies |(f_n g_n)(x) - (fg)(x)| \le \delta \text{ for all } x \in E.
$$

Thus $(f_n g_n)$ converges uniformly on E.

5

For each $n \in \mathbb{N}$ define $f_n : \mathbb{R} \longrightarrow \mathbb{R}$, $x \longmapsto x + 1/n$ and define $f : \mathbb{R} \longrightarrow \mathbb{R}$, $x \longmapsto x$.

Let $\epsilon > 0$ and choose $N > 1/\epsilon$. Then $n \geq N$ implies $|f_n(x) - f(x)| < \epsilon$ for all $x \in \mathbb{R}$ so that (f_n) converges uniformly to f on R.

Let $g_n = f_n$ and $g = f$. Pointwise $f_n g_n \longrightarrow fg$ so that if $(f_n g_n)$ were to convergence uniformly there would exist an $N\in\mathbb{N}$ such that

$$
n \ge N \implies |(f_n g_n)(x) - (fg)(x)| \le 1 \text{ for all } x \in \mathbb{R}.
$$

However,

$$
(f_n g_n)(x) - (fg)(x) = (x + 1/n)^2 - x^2 = 2x/n + 1/n^2
$$

so that

$$
|(f_n g_n)(n) - (fg)(n)| \ge 2.
$$

Let $f : [0,1] \longrightarrow [0,1]$ be continuously differentiable with nonincreasing derivative and with $f(0) =$ $f(1) = 0$. The graph of f gives an arc in $[0, 1]^2$:

$$
\gamma:[0,1]\longrightarrow[0,1]^2,\ t\longmapsto(t,f(t))
$$

 γ is continuously differentiable with

$$
\gamma': [0,1] \longrightarrow \mathbb{R}^2, t \longmapsto (1, f'(t)).
$$

By theorem 6.27 the arc length of γ is given by

$$
\int_0^1 |\gamma'(t)| dt = \int_0^1 \sqrt{1 + f'(t)^2} dt.
$$

The Cauchy-Schwartz inequality proved on an earlier sheet gives $\sqrt{1 + f'(t)^2} \leq 1 + |f'(t)|$. So that the length of γ is bounded by

$$
\int_0^1 1 + |f'(t)| dt.
$$

If $f'(t) > 0$ for all $t \in [0, 1]$ question 4 from sheet 8 and the Fundamental Theorem of Calculus give

$$
f(1) - f(0) = \int_0^1 f'(t)dt > 0,
$$

a contradiction. So $\{t \in [0,1] : f'(t) \leq 0\} \neq \emptyset$. Similarly, $\{t \in [0,1] : f'(t) \geq 0\} \neq \emptyset$. Since f' is continuous the intermediate value theorem gives an $a \in [0,1]$ such that $f'(a) = 0$. Since f' is non-increasing $f'(x) \geq 0$ on $[0, a]$ and $f'(x) \leq 0$ on $[a, 1]$. Thus the fundamental theorem of calculus gives

$$
\int_0^1 1 + |f'(t)|dt = 1 + \int_0^a f'(t)dt - \int_a^1 f'(t)dt = 1 + (f(a) - f(0)) - (f(1) - f(a)) = 1 + 2f(a) \le 3.
$$