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1.1

Suppose a ∈ R and that f : (a,∞) −→ R is a twice-differentiable. Suppose, in addition that

sup
x∈(a,∞)

|f(x)| = M0, sup
x∈(a,∞)

|f ′(x)| = M1 and sup
x∈(a,∞)

|f ′′(x)| = M2.

Let x ∈ (a,∞) and h > 0. Taylor’s Theorem (5.15) gives us a ξ ∈ (x, x+ 2h) such that

f(x+ 2h) = f(x) + 2hf ′(x) + (2h)2
f ′′(ξ)
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and so
2h|f ′(x)| = |f(x+ 2h)− f(x)− 2h2f ′′(ξ)| ≤ 2M0 + 2h2M2.

Hence, for all h > 0, hM1 ≤M0 + h2M2. When h ≤ 0, hM1 ≤ 0 ≤M0 + h2M2 and

h2M2 − hM1 +M0 ≥ 0 for all h ∈ R.

This means the discriminant is less than or equal to 0, i.e. M2
1 ≤ 4M0M2.

1.2

Define f : (−1,∞) −→ R by

f(x) =

{
2x2 − 1 x ∈ (−1, 0]
x2−1
x2+1

x ∈ [0,∞)

Then

f ′(x) =

{
4x x ∈ (−1, 0]

4x
(x2+1)2

x ∈ [0,∞)

and

f ′′(x) =

{
4 x ∈ (−1, 0]
4(1−3x2)
(x2+1)3

x ∈ [0,∞)

1



1. M0 = 1.
∣∣∣x2−1
x2+1

∣∣∣ ≤ x2+1
x2+1

= 1 and |2x2 − 1| ≤ 1 on (−1, 0]. Also |f(0)| = 1.

2. M1 = 4. |x| ≤ (x2 + 1)2 is seen by considering the cases |x| ≤ 1 and |x| ≥ 1, which gives∣∣∣ 4x
(x2+1)2

∣∣∣ ≤ 4. supx∈(−1,0] |4x| = 4.

3. M2 = 4. We just need to show that |1 − 3x2| ≤ |x2 + 1|2. This is true if and only if
(1− 3x2)2 ≤ (x2 + 1)4 and this follows from x2(x2 + 5)((x2 − 1/2)2 + 7/8) ≥ 0.

1.3

For vector-valued functions... I have a feeling this is false, but cannot find a counter example.
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Suppose f : (0,∞) −→ R is twice differentiable, that f ′′ is bounded by M and that f(x) −→ 0 as
x −→∞.

Let a ∈ (0,∞). By the first question,(
sup

x∈(a,∞)
|f ′(x)|

)2

≤ 4 sup
x∈(a,∞)

|f(x)| sup
x∈(a,∞)

|f ′′(x)| ≤ 4M sup
x∈(a,∞)

|f(x)|

supx∈(a,∞) |f(x)| −→ 0 as a −→ ∞ and so supx∈(a,∞) |f ′(x)| −→ 0. This means f ′(x) −→ 0 as
x −→∞.
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Suppose α : [a, b] −→ R is increasing and continuous at x0 ∈ [a, b]. Define f : [a, b] −→ R by
f(x0) = 1 and f(x) = 0 whenever x 6= x0. f is bounded on [a, b] and has one discontinuity at
x0 ∈ [a, b], where α is continuous. Theorem 6.10 tells us f ∈ R(α). By definition∫ b

a
fdα = supL(P, f, α)

but

L(P, f, α) =
n∑

i=1

mi∆αi.

Clearly, all the mi are zero and so
∫
fdα = 0.
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Suppose f : [a, b] −→ R is continuous. Then by theorem 6.8, f ∈ R. Suppose f ≥ 0 and that there
exists an x0 ∈ [a, b] with f(x0) 6= 0. Because f is continuous at x0 there exists a δ > 0 such that

x ∈ [a, b], |x− x0| < δ =⇒ |f(x)− f(x0)| < |f(x0)|/2.
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Thus
x ∈ [a, b], |x− x0| < δ =⇒ |f(x)| > |f(x0)|/2.

By definition ∫ b

a
f(x)dx = supL(P, f) and L(P, f) =

n∑
i=1

mi∆xi.

If we choose a partition P with two points in [a, b]∩ (x0− δ, x0 + δ) then at least one of the mi’s is
strictly greater than zero and the rest are all greater than or equal to zero. Thus for this partition
L(P, f) > 0 and we obtain

∫
f > 0.

By the contrapositive we have answered the question.
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Define f : [0, 1] −→ R by

f(x) =

{
1 x ∈ [0, 1] ∩Q
−1 x ∈ [0, 1] ∩ (R \Q)

Then f(x)2 = 1 for all x ∈ [0, 1] and thus by Theorem 6.8, f2 ∈ R. However, f /∈ R since one can
easily check that

U(P, f) = 1 and L(P, f) = −1 for all partitions P.

Define ϕ : R −→ R, x 7−→ x1/3. Then ϕ is continuous. Suppose that f3 ∈ R. Then by Theorem
6.11, f = ϕ ◦ f3 ∈ R.
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Let P be the Cantor set and let f : [0, 1] −→ R be a bounded function, which is continuous at
every point outside P . We will show that f ∈ R. Reading the proof of Theorem 6.10 we see that
that it will carry through provided that for any ε > 0 we can can find finitely many disjoint in-
tervals [uj , vj ] ⊂ [0, 1], such that

∑m
j=1(vj−uj) < ε, P ⊂

⋃m
j=1[uj , vj ], and P \{0, 1} ⊂

⋃m
j=1(uj , vj).

Constructing such intervals [uj , vj ] is straightforward. Given ε > 0 we may choose n ∈ N such
that (2/3)n < ε/2. P ⊂ En (see page 41 for notation) and En is a union of disjoint intervals [uj , vj ]
with

∑m
j=1 vj−uj = (2/3)n. Replace [0, 1/3n] by [0, 1/3n+δ/2m], [1−1/3n, 1] by [1−1/3n−δ/2m, 1]

and the other intervals [uj , vj ] by [uj − δ/4m, vj + δ/4m] where δ < ε is chosen so that the intervals
remain disjoint.
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Let f : [0,∞) −→ [0,∞) be continuous and strictly increasing and suppose f(0) = 0. We wish to
show that ∫ a

0
f(x)dx+

∫ b

0
f−1(x)dx ≥ ab
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for any a, b > 0.

We remark that the integrals are well-defined by Theorem 6.9. By definition, there exists a se-
quence of partitions (Pn) of [0, a] such that

U(Pn, f) −→
∫ a

0
f(x)dx

and a sequence of partitions (Qn) of [0, b] such that

L(Qn, f
−1) −→

∫ b

0
f−1(x)dx.

Let P ′n = Pn ∩ f−1(Qn), P̃n = P ′n ∩ [0, a], Q′n = Qn ∩ f(Pn) and Q̃n = Q′n ∩ [0, b]. Then U(P̃n, f) ≤
U(Pn, f), L(Q̃n, f

−1) ≥ L(Qn, f
−1) and so we have

U(P̃n, f) −→
∫ a

0
f(x)dx and L(Q̃n, f

−1) −→
∫ b

0
f−1(x)dx.

Replace Pn by P̃n and Qn by Q̃n. Because f is strictly increasing

U(Pn, f) =

p∑
i=1

f(xi)(xi − xi−1)

where Pn = {x0, . . . , xp} and similarly,

L(Qn, f
−1) =

q∑
j=1

f−1(yj−1)(yj − yj−1)

where Qn = {y0, . . . , yq}. Also,

ab =

[
p∑

i=1

(xi − xi−1)

] q∑
j=1

(yj − yj−1)


Let P ′n = {x0, . . . , xp, . . . , xp′} and Q′n = {y0, . . . , yq, . . . , yq′}. Realising that we can write

U(Pn, f) =

p∑
i=1

∑
yj≤f(xi)

(yj − yj−1)(xi − xi−1)

=

p∑
i=1

∑
yj≤f(xi)

(xi − xi−1)(yj − yj−1)

and

L(Qn, f
−1) =

q∑
j=1

∑
xi≤f−1(yj−1)

(xi − xi−1)(yj − yj−1)

=

q∑
j=1

∑
f(xi)<yj

(xi − xi−1)(yj − yj−1)
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we obtain ab ≤ U(Pn, f) + L(Qn, f
−1) since the left hand side involves summing over fewer terms.

Taking limits gives the required identity.

When f(a) = b we obtain equality because the sums are equal. To see the converse we use an
argument like the one in question 4: if f(a) > b, find a neigborhood N on which this is true; one
of the sums in the above argument will consist of more terms and the extra contribution will not
converge to zero as this contribution is giving

∫
N f(x)− bdx > 0. Simarly, if f(a) < b.

I would encourage drawing a picture to follow this argument. I hope it is not too hard to fol-
low, but it might be confusing without a good picture in front of you.
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