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1.1
Suppose a € R and that f: (a,00) — R is a twice-differentiable. Suppose, in addition that
sup |f(z)] = Mo, sup )If’(fﬂ)! =M and sup |f"(z)| = Mo.

z€(a,00) z€(a,00 z€(a,00)
Let z € (a,00) and h > 0. Taylor’s Theorem (5.15) gives us a £ € (x,z + 2h) such that

(2h)2w

f(z +2h) = f(x) + 2hf'(x) + 5

and so
20| f'(x)] = |f(x 4 2h) — f(x) — 2h*f"(€)] < 2My + 2h° Mo,

Hence, for all h > 0, hM; < Mg+ h®>My. When h < 0, hM; < 0 < Mg + h?My and
h®My — hMy + My >0 for all h e R.

This means the discriminant is less than or equal to 0, i.e. M2 < 4MoMs.

1.2
Define f : (—1,00) — R by

202 -1 z € (-1,0
fa) =4 (=1,9)
o x € [0,00
Then
4z (—1,0]
@2 +1)2 S [ , OO
and




1. My =1.

z2+1 241

1’2_1‘ < 2#l — 1 and |22% — 1| < 1 on (—1,0]. Also [£(0)| = 1.

2. My = 4. |z| < (2® + 1)? is seen by considering the cases |z| < 1 and |x| > 1, which gives
‘(];24%)2‘ S 4 Supxe(_Lo] |4IL" = 4

3. My = 4. We just need to show that |1 — 3z% < |22 + 1|?. This is true if and only if
(1 —322)2 < (22 4 1)* and this follows from 2?(2? 4 5)((2? — 1/2)2 +7/8) > 0.

1.3

For vector-valued functions... I have a feeling this is false, but cannot find a counter example.
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Suppose f : (0,00) — R is twice differentiable, that f” is bounded by M and that f(z) — 0 as
T — 00.

Let a € (0,00). By the first question,

2
(Sup |f'(l“)|> <4 sup |f(z)| sup |f"(z)| <4M sup |f(z)]

z€(a,00) z€(a,00) z€(a,00) z€(a,00)

SUDge(a,00) | f ()] — 0 as @ — oo and 50 SUp,e(q,00) [f'(z)| — 0. This means f'(z) — 0 as
r —> 00.
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Suppose « : [a,b] — R is increasing and continuous at xg € [a,b]. Define f : [a,b] — R by
f(zg) = 1 and f(z) = 0 whenever x # xy. f is bounded on [a,b] and has one discontinuity at
xo € [a,b], where « is continuous. Theorem 6.10 tells us f € Z(«). By definition

b
/ fda=sup L(P, f,«)

but .
L(P, f,a) = ZmiAozi.
=1

Clearly, all the m; are zero and so [ fda = 0.

4

Suppose f : [a,b] — R is continuous. Then by theorem 6.8, f € #Z. Suppose f > 0 and that there
exists an xo € [a,b] with f(z9) # 0. Because f is continuous at z( there exists a ¢ > 0 such that

z € a,b], |z —xo| <6 = [f(x) — f(zo)| < [|f(z0)]/2.



Thus
z € lab], [x —xo| <0 = |f(z)| > |f(x0)]/2.

By definition
b n
/ f(z)de =sup L(P, f) and L(P,f) = ZmlA:UZ
a i=1
If we choose a partition P with two points in [a, b] N (xg — &, zo + 0) then at least one of the m;’s is

strictly greater than zero and the rest are all greater than or equal to zero. Thus for this partition

L(P, f) > 0 and we obtain [ f > 0.

By the contrapositive we have answered the question.

5

Define f :]0,1] — R by

_J1 2 e0,1]NnQ
f(x)_{—1 z € 0,1 N (R\ Q)

Then f(z)? =1 for all z € [0,1] and thus by Theorem 6.8, f? € #. However, f ¢ Z since one can
easily check that
UP,f)y=1 and L(P,f)=—1 for all partitions P.

Define ¢ : R — R, 2 —> z'/3. Then ¢ is continuous. Suppose that f3 € Z. Then by Theorem
6.11, f=po f3c .

6

Let P be the Cantor set and let f : [0,1] — R be a bounded function, which is continuous at
every point outside P. We will show that f € Z. Reading the proof of Theorem 6.10 we see that
that it will carry through provided that for any ¢ > 0 we can can find finitely many disjoint in-
tervals [uj, v;] C [0,1], such that 377" (v;—uy) <, P C UL, [uy,v5], and P\{0,1} € UL, (uy, v)).

Constructing such intervals [u;, v;] is straightforward. Given € > 0 we may choose n € N such
that (2/3)" < €/2. P C E, (see page 41 for notation) and E, is a union of disjoint intervals [u;, v;]
with 377" ) vj—u; = (2/3)". Replace [0,1/3"] by [0,1/3"+0/2m], [1-1/3",1] by [1-1/3"—5/2m, 1]
and the other intervals [u;, v;] by [u; —d/4m, v; +/4m] where 6 < € is chosen so that the intervals
remain disjoint.

7

Let f :[0,00) — [0,00) be continuous and strictly increasing and suppose f(0) = 0. We wish to
show that

/Oaf(x)dx + /Ob f Y (z)dz > ab



for any a,b > 0.

We remark that the integrals are well-defined by Theorem 6.9. By definition, there exists a se-
quence of partitions (P,) of [0, a] such that

UP ) — [ fa)do
0
and a sequence of partitions (@) of [0, b] such that
HQu s — [

Let P, = P, N f~(Qn), Po = P,N[0,a], @), = QnN f(Py) and Qn = @}, N[0,b]. Then U(B,, f) <
U(PTMf)? (Qna 1) 2 L(Qn, f_ ) and so we have

U(B,, f) —>/ f(z)dz and L(Qn, f _>/ 1

Replace P, by P, and Q, by Q,,. Because f is strictly increasing

P
U(Po, f) =Y flai)(zi — zi1)
i=1
where P,, = {zo,...,z,} and similarly,
L(Qn £ = F w0y — yj1)
7j=1

where Q,, = {v0,-..,yq}. Also,

ab:[j’; _] S0 v

i=1 j=1

Let P, = {zo,...,%p,..., 2y} and Q), = {yo,...,Yq,--.,Yqy }. Realising that we can write

U(Py, f) = Z (Y5 — yj—1) (@i — xi-1)

and

q
L(Qn, f71) = Z (zi — 2i-1) (Y5 — Yj-1)



we obtain ab < U(P,, f) + L(Qn, f~!) since the left hand side involves summing over fewer terms.
Taking limits gives the required identity.

When f(a) = b we obtain equality because the sums are equal. To see the converse we use an
argument like the one in question 4: if f(a) > b, find a neighorhood N on which this is true; one
of the sums in the above argument will consist of more terms and the extra contribution will not
converge to zero as this contribution is giving [y f(z) — bdx > 0. Simarly, if f(a) < b.

I would encourage drawing a picture to follow this argument. I hope it is not too hard to fol-
low, but it might be confusing without a good picture in front of you.



	
	
	
	

	
	
	
	
	
	

