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Suppose f : X −→ Y is continuous and let E ⊂ X.

f(E) ⊂ f(E) =⇒ E ⊂ f−1(f(E))

By the corollary to Theorem 4.8, f−1(f(E)) is closed in X. Thus

E ⊂ f−1(f(E)) =⇒ f(E) ⊂ f(E).

Suppose f : X −→ Y and that for all E ⊂ X, f(E) ⊂ f(E). Let V ⊂ Y be closed. Taking
E = f−1(V ) we see that

f(f−1(V )) ⊂ f(f−1(V )) ⊂ V = V.

Thus f−1(V ) ⊂ f−1(V ), which shows f−1(V ) is closed. By the corollary to Theorem 4.8, f is
continuous.
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Let f be a continuous mapping of a compact metric space X into a metric space Y .

Suppose f is not uniformly continuous. Then there exists an ε > 0 for which the definition of
uniform continuity fails. In particular, for any n ∈ N there exist pn, qn ∈ X with dX(pn, qn) < 1/n
and dY (f(pn), f(qn)) ≥ ε. In this way we can construct sequences (pn) and (qn) as suggested in the
question.

Rather than use Theorem 2.37, let’s use the slightly stronger Theorem 3.6a); one might regard
3.6a) as a corollary of 2.37. Let (pnk

) be a convergent subsequence of (pn) and let (qnkl
) be a con-

vergent subseqence of (qnk
). Now (pnkl

) and (qnkl
) are convergent and still have the property stated

in the question. Thus, we may suppose without loss of generality that (pn) and (qn) are convergent.

Write p for the limit of (pn) by p and q for the limit of (qn). Then

d(p, q) ≤ d(p, pn) + d(pn, qn) + d(qn, q) −→ 0 as n −→∞.
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Thus p = q. f is continuous at p and so there exists a δ > 0 such that

dX(x, p) < δ =⇒ dY (f(x), f(p)) < ε/2.

Choose n ∈ N such that dX(pn, p) < δ and dX(qn, p) < δ. Then

d(f(pn), f(qn)) ≤ d(f(pn), f(p)) + d(f(qn), f(p)) < ε,

a contradiction. We conclude that f is uniformly continuous.
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Let f : I −→ I be a continuous function. Define g : I −→ R by g(x) = x− f(x). Then

g(0) = 0− f(0) ≤ 0 and 0 ≤ 1− f(1) = g(1).

If equality holds in either case then we are done. Otherwise g(0) < 0 < g(1). One can check that
g is continuous (use Theorem 4.6 and 4.4a)) and so we can apply Theorem 4.23 to find a point
x ∈ (0, 1) such that g(x) = 0, i.e. f(x) = x.

4

Let f : R −→ R be continuous and suppose that limx−→+∞ f(x) and limx−→−∞ f(x) exist and are
finite. Let A+ and A− be their respective values. We will show f is uniformly continuous.

Let ε > 0. Choose K+ ∈ N such that

x ≥ K+ − 1 =⇒ |f(x)−A+| < ε/2.

Choose K− ∈ N such that

−x ≥ K− − 1 =⇒ |f(x)−A−| < ε/2.

Let K = max{K+,K−}. X = [−K−1,K+1] is compact and so by Theorem 4.19, f |X is uniformly
continuous. Choose δ ∈ (0, 1) such that

|x|, |x′| ≤ K + 1 and |x− x′| < δ =⇒ |f(x)− f(x′)| < ε.

We claim that
|x− x′| < δ =⇒ |f(x)− f(x′)| < ε.

If this is true then f is uniformly continuous and we are done.

Suppose |x− x′| < δ. Because δ < 1, there are three cases to consider:

1. |x|, |x′| ≤ K + 1 in which case |f(x)− f(x′)| < ε.

2. x, x′ ≥ K − 1 ≥ K+ − 1 in which case

|f(x)− f(x′)| ≤ |f(x)−A+|+ |f(x′)−A+| < ε.

3. −x,−x′ ≥ K − 1 ≥ K− − 1 in which case

|f(x)− f(x′)| ≤ |f(x)−A−|+ |f(x′)−A−| < ε.
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Let K be a compact metric space with metric d and suppose f : K −→ K is distance preserving,
meaning that d(f(x), f(y)) = d(x, y) for all x, y ∈ K.

Suppose for contradiction that K 6= f(K). Then we can choose p0 ∈ K with p0 /∈ f(K). In-
ductively let pn = f(pn−1) for n ∈ N. By Theorem 3.6a), (pn)∞n=1 has a convergent subsequence
(pn(k))

∞
k=1.

Fix r ∈ N. Since (pn(k)) is Cauchy there exists Nr ∈ N such that

k ≥ l ≥ Nr =⇒ d(pn(k), pn(l)) < 1/r.

Using that f is distance preserving and our inductive definition of (pn) we see that

k > l ≥ Nr =⇒ d(pn(k)−n(l), p) < 1/r.

Suppose inductively that we have 1 ≤ m1 < . . . < mr−1 such that d(pms , p) < 1/s for all s < r.
Let mr = n(Nr +mr−1 + 1)− n(Nr). Then mr > mr−1 and d(pmr , p) < 1/r. In this way we may
construct a subsequence of (pn)∞n=1 converging to p0.

f is easily seen to be continous and so f(K) is compact. Thus f(K) is closed and since pn ∈ f(K)
for each n ∈ N we obtain p ∈ f(K), a contradiction.

6

Let f : R −→ R and suppose that

|f(x)− f(y)| ≤ (x− y)2 for all x, y ∈ R.

Fix x ∈ R. Then for y 6= x, ∣∣∣∣f(x)− f(y)

x− y

∣∣∣∣ ≤ |x− y| −→ 0 as y −→ x.

Thus f ′(x) = 0. By Theorem 5.11b), f is constant.
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