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1

Suppose f: X — Y is continuous and let £ C X.

f(E)C f(E) = EC f'(f(E))

By the corollary to Theorem 4.8, f~!(f(E)) is closed in X. Thus

EcC fTUf(E) = f(B)cC f(B).

Suppose f : X — Y and that for all E C X, f(E) C f(E). Let V C Y be closed. Taking
E = f~1(V) we see that

fAV) C ffH (V) cV =T
Thus f~1(V) c f~%V), which shows f~(V) is closed. By the corollary to Theorem 4.8, f is

continuous.

2

Let f be a continuous mapping of a compact metric space X into a metric space Y.

Suppose f is not uniformly continuous. Then there exists an ¢ > 0 for which the definition of
uniform continuity fails. In particular, for any n € N there exist p,, g, € X with dx(pn,qn) < 1/n
and dy (f(pn), f(gn)) > €. In this way we can construct sequences (p,,) and (g,) as suggested in the
question.

Rather than use Theorem 2.37, let’s use the slightly stronger Theorem 3.6a); one might regard
3.6a) as a corollary of 2.37. Let (py,) be a convergent subsequence of (pn) and let (gn,, ) be a con-
vergent subsegence of (gn, ). Now (py,, ) and (¢n,,) are convergent and still have the property stated
in the question. Thus, we may suppose without loss of generality that (p,) and (g,) are convergent.

Write p for the limit of (p,,) by p and ¢ for the limit of (g,). Then

d(p, q) < d(p,pn) + d(pm%z) + d(‘]ny Q) —0 as n — oo.



Thus p = q. f is continuous at p and so there exists a § > 0 such that

dx(z,p) <6 = dy(f(z), f(p)) <e€/2.
Choose n € N such that dx(pn,p) < d and dx(gn,p) < 6. Then

d(f(pn), fgn)) < d(f(pn), f(P)) + d(f(qn), f(p)) <,

a contradiction. We conclude that f is uniformly continuous.

3

Let f: I — I be a continuous function. Define g : I — R by g(z) =  — f(x). Then
g(0)=0—f(0) <0 and 0<1-— f(1)=g(1).

If equality holds in either case then we are done. Otherwise g(0) < 0 < g(1). One can check that
g is continuous (use Theorem 4.6 and 4.4a)) and so we can apply Theorem 4.23 to find a point
x € (0,1) such that g(z) =0, i.e. f(z)=x.

4

Let f: R — R be continuous and suppose that lim,_, .~ f(z) and lim,_,_, f(x) exist and are
finite. Let A4 and A_ be their respective values. We will show f is uniformly continuous.
Let € > 0. Choose K € N such that
r>Ki -1 = |f(x) — Ay| <¢€/2.
Choose K_ € N such that
—z>K_ -1 = |f(x)—A_| <e¢/2.

Let K = max{K,K_}. X = [-K—1, K+1]is compact and so by Theorem 4.19, f|x is uniformly
continuous. Choose ¢ € (0,1) such that

lz],|2/| < K+1 and |z —2'| <§ = |f(z) — f(2')| <e

We claim that
v —2'| <6 = |f(x) - f(2))| <e.

If this is true then f is uniformly continuous and we are done.

Suppose |z — 2'| < §. Because ¢ < 1, there are three cases to consider:
1. |z|,|2'| < K + 1 in which case |f(z) — f(2')] <e.
2. x,2/ > K —1> K, — 1 in which case
[f(z) = f(@)] < |f(z) = Ar]+ | f(a") — Ay| <e.
3. —x,—2' > K —1>K_ —1 in which case

1f(z) — f(@)] < |f(x) — A_| +|f(2)) — A_| <.



5

Let K be a compact metric space with metric d and suppose f : K — K is distance preserving,
meaning that d(f(z), f(y)) = d(z,y) for all z,y € K.

Suppose for contradiction that K # f(K). Then we can choose py € K with py ¢ f(K). In-
ductively let p, = f(pn—1) for n € N. By Theorem 3.6a), (p,)52; has a convergent subsequence

(Pr(k))iZs-

Fix r € N. Since (py1)) is Cauchy there exists N, € N such that
k>1> N, = d(pnr),Pn)) <1/

Using that f is distance preserving and our inductive definition of (p,) we see that
k>1> N, = dpnk)-na),p) < 1/7.

Suppose inductively that we have 1 < m; < ... < m,_; such that d(pn,,,p) < 1/s for all s < r.
Let m, = n(N, +m,_1 + 1) — n(N;). Then m, > m,_1 and d(pp,.,p) < 1/r. In this way we may
construct a subsequence of (p,)>2; converging to po.

f is easily seen to be continous and so f(K) is compact. Thus f(K) is closed and since p, € f(K)
for each n € N we obtain p € f(K), a contradiction.

6

Let f : R — R and suppose that
f(x) = f(y)] < (z —y)* forall z,yeR.
Fix z € R. Then for y # x,

‘f(ﬂf)—f(y)

’S\x—y\—ﬂ) as Yy — .
r—y

Thus f/(z) = 0. By Theorem 5.11b), f is constant.



	
	
	
	
	
	

