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a

Let an = n3zn. Then ∣∣∣∣an+1

an

∣∣∣∣ =
(n+ 1)3

n3
|z| ≥ |z|

and ∣∣∣∣an+1

an

∣∣∣∣ −→ |z| as n −→∞.

One sees using Theorem 3.34 that
∑
n3zn converges when |z| < 1 and diverges when |z| ≥ 1 and

the radius of convergence is 1.

b

Let an = (2n/n!)zn. Then ∣∣∣∣an+1

an

∣∣∣∣ =
2

n+ 1
|z| −→ 0 as n −→∞.

By Theorem 3.34a)
∑

(2n/n!)zn always converges so that the radius of convergence is ∞.

c

Let an = 2n/n2. Then
n
√
|an| = 2n−2/n −→ 2 as n −→∞,

by Theorem 3.20c) and Theorem 3.3c) and d). By Theorem 3.39 the radius of convergence is 1/2.

d

Let an = n3/3n. Then
n
√
|an| = 3−1n3/n −→ 1/3 as n −→∞,

by Theorem 3.20c) and Theorem 3.3c) and d). By Theorem 3.39 the radius of convergence is 3.
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This question says that given any “sublinear sequence” (an), the sequence (an/n) converges. We
also have an explicit description for the limit.

a

Let (an) be a sequence such that an+m ≤ an + am for all n,m ∈ N and let I = inf{ann : n ∈ N} ∈
R ∪ {−∞}. Set a0 = 0 for convenience. There are two cases.

1. I ∈ R.

Given ε > 0, I + ε is not a lower bound for {ann : n ∈ N} and so we can find an l ∈ N such
that

I ≤ al
l
< I +

ε

2
.

Choose N ∈ N such that max{a1, . . . , al−1}/N < ε/2. Let n ≥ N . By the division algorithm
we can find m, r ∈ N ∪ {0} such that

r < l and n = ml + r

Now an ≤ mal + ar and so

I ≤ an
n
≤ mal

ml
+
ar
N

<
(
I +

ε

2

)
+
ε

2
= I + ε

and so (an/n) converges to I.

2. I = −∞.

Let K ∈ N. We can find an l ∈ N such that

al
l
< −(K + 1).

Choose N ∈ N such that max{a1, . . . , al−1}/N < 1. Let n ≥ N . By the division algorithm
we can find m, r ∈ N ∪ {0} such that

r < l and n = ml + r

Now an ≤ mal + ar and so

an
n
≤ al

l
+
ar
N

< −(K + 1) + 1 = −K

and so (an/n) tends to I = −∞.

b

If you need convincing that lim sup and lim inf are useful concepts then here is another argument.

We have functions m, r : N2 −→ N ∪ {0} defined by the following properties:

n = m(n, l)l + r(n, l) and r(n, l) < l.
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For any n ∈ N we obtain
an
n
≤ al

l
+
ar(n,l)

n

as above. Fix l ∈ N. Because 0 ≤ r(n, l) < l we obtain

lim sup
n−→∞

an
n
≤ al

l
=⇒ lim sup

n−→∞

an
n
≤ inf

{al
l

: l ∈ N
}
.

Clearly,

lim inf
n−→∞

an
n
≥ inf

{al
l

: l ∈ N
}

and so
lim

n−→∞

an
n

= inf
{al
l

: l ∈ N
}
.
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1. First we show that (an) is bounded:

By assumption each an ≥ 0. Also, for n ∈ N

an+1 − a1 =
n∑

k=1

(ak+1 − ak) ≤
n∑

k=1

1

k2
≤
∞∑
k=1

1

k2
=
π2

6

so that for all n ∈ N
an ≤ a1 +

π2

6
.

2. Thus (an) has a convergent subsequence. Let (ank
) be such a subsequence and suppose that

it converges to a.

3. We show that (an) converges to a:

Let ε > 0. Choose K ∈ N such that

k, l ≥ K =⇒ |ank
− anl

| < ε

4
and

∞∑
j=nK

1

j2
<
ε

4
.

Suppose l ≥ nK . Then

al+1 − anK =
l∑

j=nK

(aj+1 − aj) ≤
l∑

j=nK

1

j2
<
ε

4
<
ε

2
.

Also, we can choose a k ≥ K with nk > l. Then

anK − al = (anK − ank
) +

nk−1∑
j=l

(aj+1 − aj) ≤ (anK − ank
) +

nk−1∑
j=l

1

j2
<
ε

2
.

Thus
l ≥ nK =⇒ |al − anK | <

ε

2
and so

l ≥ nK =⇒ |al − a| ≤ |al − anK |+ |anK − a| ≤
ε

2
+
ε

4
< ε.
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Alternatively, there is a cheap trick one can use.

Let b1 = a2 + 2 and bn = an + 1
n−1 for n > 1. Then b2 < b1 and for n > 1,

bn+1 = an+1 +
1

n
≤
(
an +

1

n2

)
+

1

n
< an +

1

n− 1
= bn

since
1

n2
<

1

n(n− 1)
=

1

n− 1
− 1

n
.

Thus (bn) is bounded below by 0 and monotone decreasing and so (bn) is convergent. Since (1/n)
is convergent, so is (an).

4

Let (an) be a sequence and suppose that
∑
|an+1 − an|. Since absolute convergence implies con-

vergence (Theorem 3.45),
∑

(an+1− an) converges. This means that (an− a1)∞n=1 converges and so
(an) converges by Theorem 3.3b).

The converse is untrue. Let an =
∑n

k=1
(−1)k

k . By remark 3.46, (an) converges. However, re-
mark 3.46 also tells us that

∑∞
n=1 1/n does not converge. Since |an+1 − an| = 1/(n + 1) we have

the required counterexample.

5

If (an) converges, then (an+1) converges and so by Theorem 3.3a)b), (2an+1 − an) converges.

Suppose that (an) is sequence and that (2an+1 − an) converges to b. We will show that (an)
converges to b. Let ε > 0. There exists N ∈ N such that

n ≥ N =⇒ |(2an+1 − an)− b| < ε.

Thus

n ≥ N =⇒ 2|an+1 − b| ≤ |2(an+1 − b)− (an − b)|+ |an − b| < ε+ |an − b| (1)

=⇒ |an+1 − b| < (ε+ |an − b|)/2 (2)

Choose M ∈ N such that
M > N and 2N−M |aN − b| < ε

Then using (2) inductively, we see that

n ≥M =⇒ |an − b| < ε
n−N∑
j=1

2−j + 2N−n|aN − b| ≤ ε
∞∑
j=1

2−j + 2N−M |aN − b| < 2ε

and we are done.
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a

Let f : X −→ Y be a continuous map between metric spaces. Suppose E is dense in X. We will
show that f(E) is dense in f(X).

Let y ∈ f(X) and ε > 0. We must show there exists an x′ ∈ E with dY (y, f(x′)) < ε. By
definition of f(X) there exists an x ∈ X such that f(x) = y and because f is continuous at x there
exists a δ > 0 such that

dX(x, x′) < δ =⇒ dY (f(x), f(x′)) < ε

Because E is dense in X we can find an x′ ∈ E such that dX(x, x′) < δ. Then dY (y, f(x′)) < ε.

b

Let f, g : X −→ Y be continuous maps between metric spaces. Suppose E is dense in X and that
f |E = g|E. We will show that f = g.

Let x ∈ X and ε > 0. Since f and g are continuous at x there exists a δ > 0 such that

dX(x, x′) < δ =⇒ dY (f(x), f(x′)), dY (g(x), g(x′)) < ε/2.

Since E is dense in X we may pick x′ ∈ E with dX(x, x′) < δ. Then

dY (f(x), g(x)) ≤ dY (f(x), f(x′)) + dY (f(x′), g(x′)) + dY (g(x′), g(x)) < ε/2 + 0 + ε/2 = ε.

Since this holds for all ε > 0 we must have dY (f(x), g(x)) = 0 and thus f(x) = g(x). Since x was
arbitary we are done.
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We will prove the last part first.

a

Suppose f : (a, b) −→ R is a real-valued convex function and that a < s < t < u < b. Let λ = u−t
u−s .

Then 0 < λ < 1 and t = λs+ (1− λ)u. Thus

f(t) ≤ λf(s) + (1− λ)f(u).

Now

f(t)− f(s)

t− s
≤ f(u)− f(s)

u− s
⇐⇒ (u− s)(f(t)− f(s)) ≤ (t− s)(f(u)− f(s))

⇐⇒ (u− s)f(t) ≤ (u− t)f(s) + (t− s)f(u)

⇐⇒ f(t) ≤ λf(s) + (1− λ)f(u).

Similarly, we see that
f(u)− f(s)

u− s
≤ f(u)− f(t)

u− t
.
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b

Fix x ∈ (a, b) and δ > 0 such that [x− δ, x+ δ] ⊂ (a, b). Let

C− =
f(x)− f(x− δ)

δ
and C+ =

f(x+ δ)− f(x)

δ
.

For z ∈ (x, x+ δ)

a < x− δ < x < z < x+ δ < b =⇒ C− ≤
f(z)− f(x)

z − x
≤ C+

=⇒ C−|z − x| ≤ f(z)− f(x) ≤ C+|z − x|

and for z ∈ (x− δ, x)

a < x− δ < z < x < x+ δ < b =⇒ C− ≤
f(x)− f(z)

x− z
≤ C+

=⇒ C−|z − x| ≤ f(x)− f(z) ≤ C+|z − x|

Hence letting C = max{|C+|, |C−|} we have

z ∈ (x− δ, x+ δ) =⇒ |f(z)− f(x)| ≤ C|z − x|

which shows continuity at x.

c

Let f : (a, b) −→ R be a convex function and let g : (c, d) −→ R be an increasing convex function.
Suppose that f(a, b) ⊂ (c, d) so that it makes sense to consider the composite

h : (a, b) −→ R, x −→ g(f(x)).

We will prove that h is convex.

Suppose that x, y ∈ (a, b) and λ ∈ (0, 1). Because f is convex

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y);

because g is increasing and convex

h(λx+ (1− λ)y) ≤ g(λf(x) + (1− λ)f(y))

≤ λh(x) + (1− λ)h(y).
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