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1
a
Let a, = n3z". Then
An+1 (n+ 1)3
) - O > e
an n
and
Intl) |z| as n — oo.
an

One sees using Theorem 3.34 that Y n32" converges when |z| < 1 and diverges when |z| > 1 and
the radius of convergence is 1.

b

Let a,, = (2"/n!)z". Then

2
= |z| — 0 as n — oo.
n+1

Gn+41
Aan,

By Theorem 3.34a) > (2"/n!)z" always converges so that the radius of convergence is co.

C

Let a, = 2"/n% Then
Van| = 207" — 2 as n — oo,

by Theorem 3.20c) and Theorem 3.3¢) and d). By Theorem 3.39 the radius of convergence is 1/2.

d

Let a, = n3/3". Then
V]an| = 371%™ — 1/3 as n — oo,

by Theorem 3.20c) and Theorem 3.3¢) and d). By Theorem 3.39 the radius of convergence is 3.



2

This question says that given any “sublinear sequence” (ay), the sequence (a,/n) converges. We
also have an explicit description for the limit.

a

Let (a,) be a sequence such that apip, < a, + ay, for all n,m € N and let I = inf{%" :n €N} e
R U{—o0}. Set ap = 0 for convenience. There are two cases.

b

1. T eR.

Given € > 0, I + € is not a lower bound for {¢* : n € N} and so we can find an I € N such
that

aj €
I<—=<I+4 .
1 +2

Choose N € N such that max{ai,...,a;—1}/N < €/2. Let n > N. By the division algorithm
we can find m,r € NU {0} such that

r<l and n=ml+r

Now a,, < ma; + a, and so
an _ ma; € €
<M 7<(1 7) Cog
_n_ml-l-N +2 +2 + €

and so (a,/n) converges to I.

.= —o0.

Let K € N. We can find an | € N such that
% < —(K +1).

Choose N € N such that max{aj,...,a;_1}/N < 1. Let n > N. By the division algorithm
we can find m,r € NU {0} such that

r<l and n=ml+r

Now a,, < ma; + a, and so

and so (a,/n) tends to I = —o0.

If you need convincing that limsup and liminf are useful concepts then here is another argument.

We have functions m,r : N2 — N U {0} defined by the following properties:

n=m(n,)l+r(n,l) and r(n,l) <lI.



For any n € N we obtain
An < ay + Qr(n,l)

n l n
as above. Fix [ € N. Because 0 < r(n,l) < [ we obtain

limsupa—n < % = limsupa—n < inf{% 1l e N}.

n—oo N n—oo N
Clearly,
liminfa—n > inf{@ 1l e N}
n—oo N l
and so a
lim —zlnf{—l lEN}
3

1. First we show that (a,) is bounded:
By assumption each a, > 0. Also, for n € N

n n

1 =1 x?
an+1—a1=Z(ak+1—ak)§ ESZEZE
k=1 k=1 k=1

so that for all n € N

2. Thus (ay) has a convergent subsequence. Let (ay,) be such a subsequence and suppose that
it converges to a.

3. We show that (a,) converges to a:
Let € > 0. Choose K € N such that

o
=
o,
I\D‘H
AN
R

k> K = lan, —an| <

Suppose | > ng. Then
1

!
1 €
Al41 — Qng = Z(%H‘%’)S Z 2 <775

J=ngk J=ng
Also, we can choose a k > K with ng > [. Then

ng—1 ne—1

1 €
ang — @ = (Ang — an,) + Z(aj+1_aj)§<an1<_ank)+ ﬁ<§'
=l j=l J
Thus .
[ >ng = |a; — any| <§
and so

€ €
I >npe = \al—alg]al—anK|+\anK—a\§§+Z<e.



Alternatively, there is a cheap trick one can use.

Letb1:a2+2andbn:an+ﬁforn>1. Then by < by and for n > 1,

1 1 1 1
bn+1:an+1+*§ an+72 +*<an+7:bn
n n n n—1
since
1 111
n?2 “nn-1 n-1 n

Thus (by,) is bounded below by 0 and monotone decreasing and so (by,) is convergent. Since (1/n)
is convergent, so is (a).

4

Let (a,) be a sequence and suppose that ) |an4+1 — ap|. Since absolute convergence implies con-
vergence (Theorem 3.45), > (ap41 — ap) converges. This means that (a, —a1)32, converges and so
(an) converges by Theorem 3.3b).

_1\k
The converse is untrue. Let ap, = > ;_; % By remark 3.46, (ay) converges. However, re-

mark 3.46 also tells us that ) 2, 1/n does not converge. Since |an4+1 — an| = 1/(n + 1) we have
the required counterexample.

5}

If (ay,) converges, then (a,+1) converges and so by Theorem 3.3a)b), (2a,+1 — ay) converges.

Suppose that (a,) is sequence and that (2a,4+1 — ay) converges to b. We will show that (a,)
converges to b. Let € > 0. There exists NV € N such that

n>N = |(2ap41 —an) — b <e.
Thus

n>N = 2lapt1 — b < [2(ans1 —b) — (an — b)| + |an — b] < € + |a, — b| (1)
= |ap+1 — b < (e + |an — b])/2 (2)

Choose M € N such that
M >N and 2V Mgy —b| < ¢

Then using (2) inductively, we see that

n—N 0o
n>M = la, -0 <ed 2742V ay —b| < e 277 42N May — b < 2
j=1 j=1

and we are done.



6

a

Let f: X — Y be a continuous map between metric spaces. Suppose E is dense in X. We will
show that f(E) is dense in f(X).

Let y € f(X) and € > 0. We must show there exists an ' € E with dy(y, f(2)) < e. By
definition of f(X) there exists an € X such that f(z) = y and because f is continuous at = there
exists a 0 > 0 such that

dx(z,2) <6 = dy(f(x), f(2) <e

Because F is dense in X we can find an 2’ € F such that dx(z,2’) < 4. Then dy (y, f(2')) <e.

b
Let f,g: X — Y be continuous maps between metric spaces. Suppose F is dense in X and that

fIE = g|E. We will show that f = g.

Let x € X and € > 0. Since f and g are continuous at x there exists a § > 0 such that

dx(CC,.Z'/) <6 = dY(f(x)vf(x/))7 dy(g(l'),g(l'/)) < 6/2
Since E is dense in X we may pick ' € F with dx(z,2’) < §. Then

dy (f(z), 9(x)) < dy(f(z), f(2')) + dy (f(2), g(a")) + dy (9(2"),9(2)) <€/2+0+€/2 =€

Since this holds for all € > 0 we must have dy (f(x),g(z)) = 0 and thus f(x) = g(z). Since = was
arbitary we are done.

7
We will prove the last part first.

a

u—t
u—s"

Suppose f : (a,b) — R is a real-valued convex function and that a < s <t <u <b. Let A =
Then 0 < A <1 and ¢t = As+ (1 — A)u. Thus

f(&) S Af(s) + (1= A)f(w).
Now

F(0) = £(s) _ fw) ~ £(s)

t—s - uU—S

= (u—=s)(f(t) = f(s)) < (t =) (f(u) = f(5))
= (u—s)f(t) < (u—1)f(s) + (t =) f(u)

— f(t) S Af(s) + (1 = A)f(u).

Similarly, we see that
flu) = f(s)

uU—S u—t

at



b
Fix z € (a,b) and § > 0 such that [z — d,z + ] C (a,b). Let

o AN Ly o St s
For z € (z,z +9)
a<r—-0<r<z<r+d<b— C_§M§C+

Z—XT
— C_|z— 2| < f(2) ~ f(2) < Cylz — 2]

and for z € (x — 6, z)

f(@) = £(2)
— Clz—1] < f(x) - f(z) < Cilz 2]

a<r—oi0<z<zr<z+di<b = C_<

Hence letting C' = max{|Cy|,|C_|} we have
z€(x—06z+4+0) = |f(2) — f(x)] <Clz — x|
which shows continuity at x.

C

Let f : (a,b) — R be a convex function and let g : (¢,d) — R be an increasing convex function.
Suppose that f(a,b) C (c,d) so that it makes sense to consider the composite

h:(a,b) — R, x — g(f(x)).
We will prove that h is convex.

Suppose that =,y € (a,b) and X € (0,1). Because f is convex

fAz 4+ (1= Ny) <Af(z)+ (1= A)f();

because g is increasing and convex

h(Az + (1= AN)y) < g(Af(z) + (1= A)f(y))
< Ah(z) + (1 — AN)h(y).



	
	
	
	
	
	
	

