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1

a
Lemma: Let (ay,) be a bounded sequence of real numbers,
E = {a € R: there exists a subsequence (an,, ) of (a,) with a,, — a}

and b, = sup{a,, : m > n}. Then sup E = inf b,,.

Proof: Write b for inf b,,. It is enough to show b is an upper bound for F lying in FE.
1. b is an upper bound for F.

Let a € E. Then there exists a subsequence (ay, ) of (a,) converging to a. Because a, < by,
for all € N and (by,) is a monotone non-increasing sequence we have

E>r = nip>1r = ap, < by, < by
Thus a < b, for all » and so a < b.

2. be E.

For each s € N there exists an r(s) > s with
bs — 1/8 S CLT(S) S bs.

Define an increasing sequence of natural numbers by letting n; = (1) and ng = r(ng_1 + 1).
Then
bnk71+1 - 1/(nk—1 + 1) < Any, < bnk71+1

Let € > 0. Choose N € N such that N > 1/e and

n>N — 0<b,—-b<e

Then
k>N = |ap, —b| <e.

Thus a,, converges to b, which implies b € E.



This lemma answers the question since

limsupa, =sup F
n—-ao0

by definition and

lim (sup{am :m >n})= lim b, =infb,
n—>o00 n—ma~o0

because b,, is monotone non-increasing.

b
i

Let (ay) and (b,) be bounded sequences of real numbers. Then (a, + by,) is a bounded sequence.
In the proof of the lemma in part (a) we showed that we can find a subsequence (ay, + by, ) of
(an + by) which converges to

lim sup(ay, + by,).

n——ao0

By passing to a finer subsequence if necessary we can assume that (ap,) and (b, ) are convergent.
Then

limsup(ay, +b,) = lim (ap, +by,) = lim a,, + lim b, <limsupa, + limsupb,
n—»o0 k—o00 k—>o00 k—o00 n—>:00 n—->00

The second equality uses Theorem 3.3(a) and the final inequality uses the definition of lim sup.

ii

Suppose that (a,) convergent. Choose a subsquence (b, ) of (b,,) which converges to limsup,, . by
Then

(@n, + bp,,) <limsup(a, + by)

limsup a,, +limsupb, = lim a,, + lim b, = lim
k—s 00 k—s 00 k—s o0 n—>o00

n——oo n—~oo
The first equality uses the fact that limsup,__,. a, = limy_ o ay, = lim,,_, a, for convergent
sequences, the second equality uses Theorem 3.3(a) and the final inequality follows by definition.
iii
Let asy,—1 = bo, = 1 and as,, = ba,,—1 = —1. Then

limsupa, =limsupb, =1 and limsup(a, +b,) =0
n—00 n—»00 n—aoo

so that the equality in () is strict.
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a

Lemma: Suppose (ay,), (br) and (c;,) are sequences of real numbers such that (a,) and (c;,) converge

to [ and
an < b, <e¢, for each n € N.

Then (b,) converges to I.
Proof: Let € > 0. We can choose N’, N” € N such that

n>N = |a,—1|<¢/3 and n>N" = |c, — 1| <¢/3
Let N = max{N’, N”}. Then

n>N = 0<b,—an<cp—an<|cy,—I|+|a, —1] <2/3

S0
n>N = |by, =1 < (b, —an) +|an — 1] <e

b
Let ke Nandlet z1 > a9 > ... > x, > 0. For each n € N
max{z;}" <z¥ + ...+ 2} < kmax{z;}"

so that
max{z;} < (2} + ...+ 2})"/" < Vkmax{z;}.

Let a, = max{x;}, b, = (27 +...+2P)/" and ¢, = ¥k max{z;}. By Theorem 3.3(b) and 3.20(b),

(cn) converges to max{z;}. By part a) so does (by,).

3

The only if direction is easy so we’ll do the if direction.

Let X be a metric space. Suppose z € X and (x,) is a sequence in X and that (x,) does not
converge to . Then there exists an € > 0 with the following property: for each s € N, there exists
an r(s) € N with r(s) > s and d(x,(s),7) > €. Inductively define ny = r(1) and ng = r(ng—1 +1).
Then (z,,) is a subsequence with d(x,,,z) > € for all k& € N. Hence, no subsequence of (zy,)

converges to z and we are done.

4

a

Reflexivity and symmetry are obvious since d(z,x) = 0 and d(z,y) = d(y, ©).



Suppose (pn,) and (g,) are equivalent and (g,) and (r,) are equivalent. Given € > 0, choose
N € N such that
n>N = d(pn,qn) < €/2, d(gn,n) < €/2

Then
n>N = d(pn,Tn) < d(pm QH) + d(‘]na'rn) <€,

which shows (p,,) and (r,,) are equivalent and the relation is transitive.

b
Let (pn), (p),) and (gn), (g},) be equivalent Cauchy sequences. The triangle inequality gives
|d(Pns @n) — A(Dhs dn)| < d(prs 1) + d(gn, 47,)-
Suppose (d(pn, qn)) converges to d € R. Given € > 0 choose N € N such that
n>N = |d(pn, ) —dl, d(pn,py,), d(an, ) < €/3

Then
n>N = |dp},q,) —d| <e

Thus the definition of A(P, Q) makes sense.

Clearly, A(P,P) = 0 and A(P,Q) = A(Q, P). Suppose P,Q,R € X* and (p,) € P, () € Q,
(rn) € R. Taking limits in
d(pnv Tn) < d(pna Qn) + d(Qna Tn)

gives A(P,R) < A(P,Q) + A(Q, R).

Suppose A(P,Q) = 0. Then lim,,_, d(pn,qn) = 0 which implies (p,) and (g,) are equivalent
and hence P = Q.

c
Let (P,); be a Cauchy sequence in X*. Let (p')>2, € P,.
For each n € N, (p')>2, is Cauchy and so
AR, €N : r,s > R, = d(p;,p) < 1/n.

Because the sequence (P,)%°; is Cauchy, for each k € N

n=1

dN,eN : n,m> N, = h_r}n d(p;,py") < 1/k.

By replacing Ny by max{Ni,... Ni, k} if necessary we may assume that N3 < No < N3 < Ny < ...
and NV, > k.

Let pp = pgka. We now set about showing that (py)7, is Cauchy. Let k > .

k>l = Np>N = lim d(pNe, pNty < 1/N;.

4



and so we may choose r > max{ Ry, , Ry, } such that d(p2¥*, pM) < 1/N;. Then

d(pr,p1) = d (pgka,pgjvl) <d (pgj;k,piv’“) +d (pM*, pMt) + d (pi\”,pgjvl)
< 1/Nk + I/Nl + 1/Nl
<3/l

which shows (pg)32; is Cauchy. Thus (pg)72, defines an element P € X*. We now set about
showing that (P,)22, converges to P. Note that

— i n ny __ Ny 7
A(Pa Pn) - rgnood(z%wpr) and d(pT7p7") - d (pRnr7p7") .
Let k € N and fix n > Nji. Let r > max{k, R, }.

Npyn> Ny = lim_d(p",pt) < 1/k
and so we may choose s > Ry, , R, such that d (pévf',p?) < 1/k. Then

d(pr,p)) = d (pﬁ;jp?) <d (p%;,pﬁw> +d (p,p%) +d (v, p})
<1/N,+1/k+1/n
<1/r+1/k+1/N,
< 3/k

Thus A(P, P,) < 3/k whenever n > N}, which shows (P,); converges to P. Thus X* is complete.

d

Trivial.

e

Let P € X* and (p,) € P. Consider the sequence (¢(py)) in X*. Let € > 0. Since (py) is Cauchy
there exists an /N € N such that

n,m>N = d(pn,pm) < €/2.
Letting m tend to infinity we obtain
n>N = A(e(pn), P) <e€/2 <e.

Thus (¢(pr)) converges to P in X* which shows ¢(X) is dense in X*.

Suppose in addition that X is complete. Then (p,) converges to some p € X. Let € > 0. Then
there exists IV € N such that
n>N = d(pmp) < €.
Thus
n>N = Ap(pn), ¢(p)) <e

This means ¢(p,,) converges to ¢(p) in X*. Thus ¢(p) = P and we see ¢(X) = X*.



k
Z an=VvVk+1-1
n=1
which diverges.

b
\/n+1—\/ﬁ\/n+1+\/ﬁ: 1 - 1
n Vn+1+yn n(Wn+1+yn)  nyn

> ﬁ converges by Theorem 3.28 and so Y a,, converges by Theorem 3.25(a).

lan| =

C

lim {/|a,| = h_)m (Yn—1)=0

n—:oQ

by Theorem 3.20(c) and Theorem 3.3(a). Thus, by Theorem 3.3(a), >_ a,, converges.

d
i

Suppose |z| > 1. Then
1 1

- < < -
1 = S
Because . o
(" ]z]"—i—l) ,(xn/\z|”—1> — |z| P as n — oo
we see (use question 2(a)) that

lim {/an| = 2|7 <1

and Theorem 3.3(a) tells us ) a,, converges.

n

ii
Suppose |z| < 1. Then |1 + 2"| < 2 so that
lan| > 1/2.

The series cannot converge since the individual terms do not tend to zero.
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Let (a,) be a sequence of positive numbers which tends to 0 but such that ) a, diverges. For

n € N let
An = Zak.
k=1

For n € N, let by,11 = VAn+1 — VA, and let by = /A;. Then

bn+1 _ V AnJrl Y An _ AnJrl - An _ 1 < 1
An+1 An+1 An+1 (\/ An+1 + v An) V An—l—l + v A, — \Y Ay

converges to 0 because /A4, tends to infinity. However,

S b= VAL
k=1

diverges.



	
	
	
	
	
	

