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a

Lemma: Let (an) be a bounded sequence of real numbers,

E = {a ∈ R : there exists a subsequence (ank
) of (an) with ank

−→ a}

and bn = sup{am : m ≥ n}. Then supE = inf bn.

Proof: Write b for inf bn. It is enough to show b is an upper bound for E lying in E.

1. b is an upper bound for E.

Let a ∈ E. Then there exists a subsequence (ank
) of (an) converging to a. Because an ≤ bn

for all ∈ N and (bn) is a monotone non-increasing sequence we have

k ≥ r =⇒ nk ≥ r =⇒ ank
≤ bnk

≤ br.

Thus a ≤ br for all r and so a ≤ b.

2. b ∈ E.

For each s ∈ N there exists an r(s) ≥ s with

bs − 1/s ≤ ar(s) ≤ bs.

Define an increasing sequence of natural numbers by letting n1 = r(1) and nk = r(nk−1 + 1).
Then

bnk−1+1 − 1/(nk−1 + 1) ≤ ank
≤ bnk−1+1

Let ε > 0. Choose N ∈ N such that N > 1/ε and

n ≥ N =⇒ 0 ≤ bn − b < ε.

Then
k ≥ N =⇒ |ank

− b| < ε.

Thus ank
converges to b, which implies b ∈ E.
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This lemma answers the question since

lim sup
n−→∞

an = supE

by definition and
lim

n−→∞
(sup{am : m ≥ n}) = lim

n−→∞
bn = inf bn

because bn is monotone non-increasing.

b

i

Let (an) and (bn) be bounded sequences of real numbers. Then (an + bn) is a bounded sequence.
In the proof of the lemma in part (a) we showed that we can find a subsequence (ank

+ bnk
) of

(an + bn) which converges to
lim sup
n−→∞

(an + bn).

By passing to a finer subsequence if necessary we can assume that (ank
) and (bnk

) are convergent.
Then

lim sup
n−→∞

(an + bn) = lim
k−→∞

(ank
+ bnk

) = lim
k−→∞

ank
+ lim

k−→∞
bnk
≤ lim sup

n−→∞
an + lim sup

n−→∞
bn

The second equality uses Theorem 3.3(a) and the final inequality uses the definition of lim sup.

ii

Suppose that (an) convergent. Choose a subsquence (bnk
) of (bn) which converges to lim supn−→∞ bn.

Then

lim sup
n−→∞

an + lim sup
n−→∞

bn = lim
k−→∞

ank
+ lim

k−→∞
bnk

= lim
k−→∞

(ank
+ bnk

) ≤ lim sup
n−→∞

(an + bn)

The first equality uses the fact that lim supn−→∞ an = limk−→∞ ank
= limn−→∞ an for convergent

sequences, the second equality uses Theorem 3.3(a) and the final inequality follows by definition.

iii

Let a2n−1 = b2n = 1 and a2n = b2n−1 = −1. Then

lim sup
n−→∞

an = lim sup
n−→∞

bn = 1 and lim sup
n−→∞

(an + bn) = 0

so that the equality in (i) is strict.
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a

Lemma: Suppose (an), (bn) and (cn) are sequences of real numbers such that (an) and (cn) converge
to l and

an ≤ bn ≤ cn for each n ∈ N.

Then (bn) converges to l.

Proof: Let ε > 0. We can choose N ′, N ′′ ∈ N such that

n ≥ N ′ =⇒ |an − l| < ε/3 and n ≥ N ′′ =⇒ |cn − l| < ε/3

Let N = max{N ′, N ′′}. Then

n ≥ N =⇒ 0 ≤ bn − an ≤ cn − an ≤ |cn − l|+ |an − l| < 2ε/3

so
n ≥ N =⇒ |bn − l| ≤ (bn − an) + |an − l| < ε.

b

Let k ∈ N and let x1 ≥ x2 ≥ . . . ≥ xk ≥ 0. For each n ∈ N

max{xi}n ≤ xn1 + . . .+ xnk ≤ kmax{xi}n

so that
max{xi} ≤ (xn1 + . . .+ xnk)1/n ≤ n

√
kmax{xi}.

Let an = max{xi}, bn = (xn1 + . . .+ xnk)1/n and cn = n
√
kmax{xi}. By Theorem 3.3(b) and 3.20(b),

(cn) converges to max{xi}. By part a) so does (bn).

3

The only if direction is easy so we’ll do the if direction.

Let X be a metric space. Suppose x ∈ X and (xn) is a sequence in X and that (xn) does not
converge to x. Then there exists an ε > 0 with the following property: for each s ∈ N, there exists
an r(s) ∈ N with r(s) ≥ s and d(xr(s), x) ≥ ε. Inductively define n1 = r(1) and nk = r(nk−1 + 1).
Then (xnk

) is a subsequence with d(xnk
, x) ≥ ε for all k ∈ N. Hence, no subsequence of (xnk

)
converges to x and we are done.

4

a

Reflexivity and symmetry are obvious since d(x, x) = 0 and d(x, y) = d(y, x).
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Suppose (pn) and (qn) are equivalent and (qn) and (rn) are equivalent. Given ε > 0, choose
N ∈ N such that

n ≥ N =⇒ d(pn, qn) < ε/2, d(qn, rn) < ε/2

Then
n ≥ N =⇒ d(pn, rn) ≤ d(pn, qn) + d(qn, rn) < ε,

which shows (pn) and (rn) are equivalent and the relation is transitive.

b

Let (pn), (p′n) and (qn), (q′n) be equivalent Cauchy sequences. The triangle inequality gives

|d(pn, qn)− d(p′n, q
′
n)| ≤ d(pn, p

′
n) + d(qn, q

′
n).

Suppose (d(pn, qn)) converges to d ∈ R. Given ε > 0 choose N ∈ N such that

n ≥ N =⇒ |d(pn, qn)− d|, d(pn, p
′
n), d(qn, q

′
n) < ε/3

Then
n ≥ N =⇒ |d(p′n, q

′
n)− d| < ε.

Thus the definition of ∆(P,Q) makes sense.

Clearly, ∆(P, P ) = 0 and ∆(P,Q) = ∆(Q,P ). Suppose P,Q,R ∈ X∗ and (pn) ∈ P , (qn) ∈ Q,
(rn) ∈ R. Taking limits in

d(pn, rn) ≤ d(pn, qn) + d(qn, rn)

gives ∆(P,R) ≤ ∆(P,Q) + ∆(Q,R).

Suppose ∆(P,Q) = 0. Then limn−→∞ d(pn, qn) = 0 which implies (pn) and (qn) are equivalent
and hence P = Q.

c

Let (Pn)∞n=1 be a Cauchy sequence in X∗. Let (pnr )∞r=1 ∈ Pn.

For each n ∈ N, (pnr )∞r=1 is Cauchy and so

∃Rn ∈ N : r, s ≥ Rn =⇒ d(pnr , p
n
s ) < 1/n.

Because the sequence (Pn)∞n=1 is Cauchy, for each k ∈ N

∃Nk ∈ N : n,m ≥ Nk =⇒ lim
r−→∞

d(pnr , p
m
r ) < 1/k.

By replacing Nk by max{N1, . . . Nk, k} if necessary we may assume that N1 ≤ N2 ≤ N3 ≤ N4 ≤ . . .
and Nk ≥ k.

Let pk = pNk
RNk

. We now set about showing that (pk)∞k=1 is Cauchy. Let k ≥ l.

k ≥ l =⇒ Nk ≥ Nl =⇒ lim
r−→∞

d(pNk
r , pNl

r ) < 1/Nl.
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and so we may choose r ≥ max{RNk
, RNl

} such that d(pNk
r , pNl

r ) < 1/Nl. Then

d(pk, pl) = d
(
pNk
RNk

, pNl
RNl

)
≤ d

(
pNk
RNk

, pNk
r

)
+ d

(
pNk
r , pNl

r

)
+ d

(
pNl
r , pNl

RNl

)
< 1/Nk + 1/Nl + 1/Nl

≤ 3/l

which shows (pk)∞k=1 is Cauchy. Thus (pk)∞k=1 defines an element P ∈ X∗. We now set about
showing that (Pn)∞n=1 converges to P . Note that

∆(P, Pn) = lim
r−→∞

d(pr, p
n
r ) and d(pr, p

n
r ) = d

(
pNr
Rnr

, pnr

)
.

Let k ∈ N and fix n ≥ Nk. Let r ≥ max{k,Rn}.

Nr, n ≥ Nk =⇒ lim
s−→∞

d
(
pNr
s , pns

)
< 1/k

and so we may choose s ≥ RNr , Rn such that d
(
pNr
s , pns

)
< 1/k. Then

d(pr, p
n
r ) = d

(
pNr
Rnr

, pnr

)
≤ d

(
pNr
Rnr

, pNr
s

)
+ d

(
pNr
s , pns

)
+ d (pns , p

n
r )

< 1/Nr + 1/k + 1/n

≤ 1/r + 1/k + 1/Nk

≤ 3/k

Thus ∆(P, Pn) ≤ 3/k whenever n ≥ Nk which shows (Pn)∞n=1 converges to P . Thus X∗ is complete.

d

Trivial.

e

Let P ∈ X∗ and (pn) ∈ P . Consider the sequence (ϕ(pn)) in X∗. Let ε > 0. Since (pn) is Cauchy
there exists an N ∈ N such that

n,m ≥ N =⇒ d(pn, pm) < ε/2.

Letting m tend to infinity we obtain

n ≥ N =⇒ ∆(ϕ(pn), P ) ≤ ε/2 < ε.

Thus (ϕ(pn)) converges to P in X∗ which shows ϕ(X) is dense in X∗.

Suppose in addition that X is complete. Then (pn) converges to some p ∈ X. Let ε > 0. Then
there exists N ∈ N such that

n ≥ N =⇒ d(pn, p) < ε.

Thus
n ≥ N =⇒ ∆(ϕ(pn), ϕ(p)) < ε.

This means ϕ(pn) converges to ϕ(p) in X∗. Thus ϕ(p) = P and we see ϕ(X) = X∗.
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a
k∑

n=1

an =
√
k + 1− 1

which diverges.

b

|an| =
√
n+ 1−

√
n

n

√
n+ 1 +

√
n√

n+ 1 +
√
n

=
1

n(
√
n+ 1 +

√
n)

<
1

n
√
n∑ 1

n
√
n

converges by Theorem 3.28 and so
∑
an converges by Theorem 3.25(a).

c

lim
n−→∞

n
√
|an| = lim

n−→∞
( n
√
n− 1) = 0

by Theorem 3.20(c) and Theorem 3.3(a). Thus, by Theorem 3.3(a),
∑
an converges.

d

i

Suppose |z| > 1. Then
1

|z|n + 1
≤ |an| ≤

1

|z|n − 1

Because (
n
√
|z|n + 1

)−1
,
(

n
√
|z|n − 1

)−1
−→ |z|−1 as n −→∞

we see (use question 2(a)) that
lim

n−→∞
n
√
|an| = |z|−1 < 1

and Theorem 3.3(a) tells us
∑
an converges.

ii

Suppose |z| ≤ 1. Then |1 + zn| ≤ 2 so that

|an| ≥ 1/2.

The series cannot converge since the individual terms do not tend to zero.
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6

Let (an) be a sequence of positive numbers which tends to 0 but such that
∑
an diverges. For

n ∈ N let

An =
n∑

k=1

ak.

For n ∈ N, let bn+1 =
√
An+1 −

√
An and let b1 =

√
A1. Then

bn+1

an+1
=

√
An+1 −

√
An

an+1
=

An+1 −An

an+1

(√
An+1 +

√
An

) =
1

√
An+1 +

√
An
≤ 1√

An

converges to 0 because
√
An tends to infinity. However,

n∑
k=1

bk =
√
An

diverges.
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