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A sketch solution for question 13 of the review sheet

Let X be a compact metric space and K1 ⊃ K2 ⊃ K3 ⊃ . . . be a sequence of nested closed con-
nected subsets.

Suppose for contradiction that there exist nonempty closed subsets A,B of K =
⋂∞
i=1Ki such

that A ∩ B = ∅ and A ∪ B = K. Then A and B are closed in X. Thus we can choose open sets
in X such that A ⊂ U , B ⊂ V , and U ∩ V = ∅. (This is because compact Hausdorff spaces are
normal - see Munkres.)

Consider Wn = Kn \ (U ∪ V ). This set is closed and it is nonempty (since otherwise writing
(U ∩ Kn) ∪ (V ∩ Kn) = Kn we see Kn is disconnected, a contradiction). Also, Wn ⊃ Wn+1 and
so, because X is compact,

⋂∞
i=1Wn 6= ∅. This gives the required contradiction since we have⋂∞

i=1Wn = K \ (U ∪ V ) = ∅.

1

Lemma: Suppose (sn) is a sequence in C converging to s. Then (|sn|) converges to |s| in C (or R).

Proof: Let ε > 0. Because (sn) converges to s, there exists an N ∈ N such that

n ≥ N =⇒ |sn − s| < ε

Since ||sn| − |s|| ≤ |sn − s|
n ≥ N =⇒ ||sn| − |s|| < ε

and we are done.

The converse is not true. Let sn = (−1)n. For each n ∈ N, |sn| = 1 and so (|sn|) converges
to 1. If (sn) were convergent then (s2n) and (s2n+1) would converge with the same limit. However,
(s2n) has limit 1 and (s2n+1) has limit −1.
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Let X be a complete metric space with metric d, and let f : X −→ X be a contraction, meaning
that there exists λ < 1 such that d(f(x), f(y)) ≤ λd(x, y) for all x, y ∈ X. Then there is a unique
point x0 ∈ X such that f(x0) = x0.

Proof:

1. Existence: Let x1 ∈ X be arbitary and inductively let xn+1 = f(xn) for n ∈ N. We will prove
that (xn) is a Cauchy sequence. Suppose inductively that

d(xr+1, xr) ≤ λr−1d(x2, x1).

Then
d(xr+2, xr+1) = d(f(xr+1), f(xr)) ≤ λd(xr+1, xr) ≤ λrd(x2, x1)

so that the above equation holds for all r ∈ N. For m > n, by repeated use of the triangle
inequality

d(xm, xn) ≤ d(xm, xm−1) + d(xm−1, xm−2) + . . .+ d(xn+1, xn).

Hence,

d(xm, xn) ≤ (λm−2 + . . . λn−1)d(x2, x1) =
λn−1(1− λm−n)

1− λ
d(x2, x1) ≤

λn−1

1− λ
d(x2, x1).

Let ε > 0. By theorem 3.20(e) and 3.3(b), there exists an N ∈ N such that

n ≥ N =⇒ λn−1d(x2, x1) < ε(1− λ)

and so
m,n ≥ N =⇒ d(xm, xn) < ε,

which shows (xn) is Cauchy. Since X is complete (xn) converges to some x0 ∈ X. Given
ε > 0 there exists N ∈ N such that

n ≥ N =⇒ d(x0, xn) <
ε

2

and so

d(x0, f(x0)) ≤ d(x0, xN+1) + d(f(xN ), f(x0)) ≤ d(x0, xN+1) + λd(xN , x0) < ε.

Since ε was arbitary, d(x0, f(x0)) = 0 giving x0 = f(x0), as required.

2. Uniqueness: If f(x0) = x0 and f(y0) = y0 then

d(x0, y0) = d(f(x0), f(y0)) ≤ λd(x0, y0) =⇒ (1− λ)d(x0, y0) ≤ 0 =⇒ d(x0, y0) ≤ 0.

Thus d(x0, y0) = 0 giving x0 = y0.
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a

Lemma: Suppose (an) is a sequence of non-negative real numbers. If (an) converges to a, then
(
√
an) converges to

√
a.

1. Case 1: a = 0.

Let ε > 0. Since (an) converges to 0 there exists an N ∈ N such that

n ≥ N =⇒ |an| < ε2.

Then
n ≥ N =⇒ |

√
an| < ε,

which shows that (
√
an) converges to 0.

2. Case 2: a > 0 (since [0,∞) is closed we cannot have a < 0).

Let ε > 0 and choose N ∈ N such that

n ≥ N =⇒ |an − a| < ε
√
a.

Then

n ≥ N =⇒ |
√
an −

√
a| = |an − a|√

an +
√
a
≤ |an − a|√

a
< ε

which shows (
√
an) converges to

√
a.

b

We have the following identity

[√
n2 + n− n

]
− 1

2
=

[√
n2 + n−

(
n+ 1

2

)] [√
n2 + n+

(
n+ 1

2

)]
√
n2 + n+

(
n+ 1

2

)
=

(
n2 + n

)
−
(
n+ 1

2

)2
√
n2 + n+

(
n+ 1

2

)
=

−1

4
[√

n2 + n+
(
n+ 1

2

)]
Given ε > 0, choose N ∈ N with N > 1/ε. Then

n ≥ N =⇒
∣∣∣∣[√n2 + n− n

]
− 1

2

∣∣∣∣ ≤ 1

n
≤ 1

N
< ε

so that
√
n2 + n− n −→ 1

2 as n −→∞.
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Theorem: Let K be a compact metric space, and {Gα}α∈A an open cover of K. Then there exists
an ε > 0 with the following property:

for every x ∈ K there exists an α ∈ A such that Nε(x) ⊂ Gα.

Proof: We proceed by contradiction. Suppose that we cannot find such an ε.

For each n ∈ N there exists a point xn ∈ K such that N1/n(x) 6⊂ Gα for every α ∈ A; other-
wise we could take ε to be equal to 1/n. By Theorem 3.6(a), (xn) has a convergent subsequence:
write (xnr) for the subsequence and x for its limit. Choose α0 ∈ A such that x ∈ Gα0 . Since Gα0

is open we can choose m ∈ N such that N2/m(x) ⊂ Gα0 . We can also find R ∈ N such that

r ≥ R =⇒ xnr ∈ N1/m(x).

Choose r ≥ R so that nr ≥ m and let s = nr. Then

N1/s(xs) ⊂ N2/m(x)

since
d(xs, y) < 1/s =⇒ d(x, y) ≤ d(x, xs) + d(xs, y) < 1/m+ 1/s ≤ 2/m.

Then
N1/s(xs) ⊂ Uα0 ,

contradicting the choice of xs.
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