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Let X be a metric space and £ C X. Let cl(E) denote the closure of E and let int(E) denote the
interior of F.

a

We proved on the last sheet (problem 2) that for any E, int(E) is open and that if E is open then
int(F) = E. Thus int(int(F)) = int(F).

Similarly, it is proved in Rudin (2.27) that for any E, cl(F) is closed and that if E is closed
then cl(E) = E. Thus cl(cl(E)) = cl(EF).

b
Lemma: E C F C X = int(F) C int(F) and cl(E) C cl(F).

Proof: Suppose E C F; then E C cl(F) and by 2.27 (a), (¢) of Rudin, cl(F) C cl(F). Also,
E¢ D F¢ gives cl(E°) D cl(F°). By what we proved in problem 2 of the last sheet this gives
(int(E))¢ D (int(F))¢ so that int(E) C int(F).

Lemma: int(cl(int(cl(E)))) = int(cl(E)).

Proof:
int(cl(E)) C cl(F) = cl(int(cl(EF))) C cl(cl(F)) = cl(E) = int(cl(int(cl(E)))) C int(cl(E))
and

int(cl(E)) C cl(int(cl(E))) = int(cl(E)) = int(int(cl(E))) C int(cl(int(cl(E)))).

Corollary: cl(int(cl(int(E)))) = cl(int(E)).

Proof: We proved last time (problem 2) that cl(£¢) = (int(F))¢ and we also have
int(E°) = ((int(E%)))" = (cl((E))) = (cl(E))*.



Now
int(cl(int(cl(E€)))) = int(cl(E°))

gives
(cl(int(cl(int(E)))))¢ = (cl(int(E)))°

and applying (—)¢ gives the result.

C

Consider E with some sequence of the cl and int operations applied to it. By (a) we can assume
no operation is applied twice in a row, and by (b) we can assume the sequence of operations has
length less than or equal to 3. Thus the only possibilites are:

E, cl(F), int(E), int(cl(F)), cl(int(E)), cl(int(cl(F))), int(cl(int(E))).

d
Let E = (QN(—o0,—1]))U{0}U[1,2) U (2,00) C R. Then
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Lemma: Q" is dense in R"™.
Proof: Just use the density of Q in R for each coordinate.

Theorem: Let n € N and let S € R” be a set such that every point in S is isolated. Then S
is at most countable.

Proof: Fix s € S. Since s is an isolated point, there exists an 7s > 0 such that N (s) NS = {s};
let 75 = 75/2 and pick an element ¢t5 € N, (s) N Q". Doing this for each s defines a function

f:85—Q" s+——ts.

We now go about showing that f is injective; since Q" is countable this will show S is at most
countable.

Suppose f(s) = f(5) and let t = f(s). Then t = t5 =t; € N, (s) N N, (5). Thus
d(s,8) <d(t,s)+d(t,5) <rs+r; < max{rs,7s}

so either s € Ny_(5) or § € Ny (s). In either case we obtain s = 3.



Open: No
Closed: Yes
Compact: Yes
Interior: ()
Limit points: ()
Closure: {1,2,3}

Open: No

Closed: No

Compact: No

Interior: (—1,0) U (0,1)
Limit points: [—1,1]
Closure: [—1,1]

Open: No
Closed: No
Compact: No
Interior: ()
Limit points: R
Closure: R

Open: No
Closed: No
Compact: No
Interior: ()
Limit points: R
Closure: R

{1,2,3} CR

[~1,0)U(0,1] C R

QcCcR

R\QCR



{(z,y) e R?:y >0} C R?

Open: Yes

Closed: No

Compact: No

Interior: {(z,y):y > 0}
Limit points: {(z,y) :y > 0}
Closure: {(x,y):y > 0}

{(z,y) eR*: 2z € [-1,0)U(0,1]} C R?

Open: No

Closed: No

Compact: No

Interior: {(z,y):z € (—-1,0)U(0,1)}
Limit points: {(z,y) : x € [-1,1]}
Closure: {(z,y):x € [-1,1]}

Let
X ={1/n:neN}

I (CRn PR

neN

and let

Lemma: Y is compact.
Proof: Let {U, : a € A} be an open cover of Y so that

Y c | U
acA

OeUUa

a€A

In particular

so there is some ap € A with 0 € Uy,. Since U,, is open, there exists an rg > 0 with N,,(0) C Uy,

For each n € N there exists an «a,, € A such that

1/n € U,,



and we can choose 7, > 0 so that
NTn(]‘/n) C Uan

Consider the set

[1/r0) [1/ro]
Z=N,0)u | N.(1/n) CUsoU | U,
n=1 n=1

One can check Y \ Z is finite: you should do this. For each point z € Z \ Y choose a, such that
z € U,,. Then

{Uap} U{Uq, :ne{l,...;|1/ro]}}U{Uqs, : 2 € Z\ Y}
is the required subcover. Alternatively, one can use Heine-Borel. I feel the argument just given is

the same in difficulty but perhaps it is longer to write down. Y is bounded and to show it is closed
one can write the complement as a union of open intervals.

Lemma: The limit points of Y are {0} U X.
Proof: Any other point is isolated and one checks that these are indeed limit points.

{0} U X is a countable set so we have answered the question.
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Let K be a compact metric space and € > 0. Since K is compact, the open cover
{NE/Q(:E) cx € K}

has a finite subcover, i.e. there exist x1,...,x, € K such that

K = Neja(wi)
=1

Let N =n+ 1. Now suppose we are give N distinct points z1,..., 2y in K. At least two of them
must lie in the same set of the cover and so there exists an ¢ € {1,...n} and two points z, # zs
with d(z,, z;) < €/2 and d(zs, ;) < €/2. Then

d(zr, zs) < d(zr,x;) + d(zs, ;) < €

and we’re done.

6

Let K be a compact metric space and fix n € N. Since K is compact the open cover
{Nip(z) 2z € K}

has finite subcover, i.e. there exist J:Sn), . ,$£Z) such that

Tn

K = U Nl/n(xz(n))'
i=1



Doing this for each n € N we obtain a countable collection of finite sets

{{a;ﬁ"),...,a:gf)} ‘n € N}.

Let D be the union of all these sets. D is at most countable since it is a countable union of finite
sets (see problem 6 of last problem set). D is dense and so we are done.

To see the final statement is true let x € K and € > 0. We can choose n € N such that 1/n < €
and there is an ¢ € {1,...,7,} such that

z € Nyj(a™).

Thus :cgn) € Nyn(x) C Ne(z), which shows D is dense in K, as required.



	
	
	
	
	
	

