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Let X be a metric space and E ⊂ X. Let cl(E) denote the closure of E and let int(E) denote the
interior of E.

a

We proved on the last sheet (problem 2) that for any E, int(E) is open and that if E is open then
int(E) = E. Thus int(int(E)) = int(E).

Similarly, it is proved in Rudin (2.27) that for any E, cl(E) is closed and that if E is closed
then cl(E) = E. Thus cl(cl(E)) = cl(E).

b

Lemma: E ⊂ F ⊂ X =⇒ int(E) ⊂ int(F ) and cl(E) ⊂ cl(F ).

Proof: Suppose E ⊂ F ; then E ⊂ cl(F ) and by 2.27 (a), (c) of Rudin, cl(E) ⊂ cl(F ). Also,
Ec ⊃ F c gives cl(Ec) ⊃ cl(F c). By what we proved in problem 2 of the last sheet this gives
(int(E))c ⊃ (int(F ))c so that int(E) ⊂ int(F ).

Lemma: int(cl(int(cl(E)))) = int(cl(E)).

Proof:

int(cl(E)) ⊂ cl(E) =⇒ cl(int(cl(E))) ⊂ cl(cl(E)) = cl(E) =⇒ int(cl(int(cl(E)))) ⊂ int(cl(E))

and
int(cl(E)) ⊂ cl(int(cl(E))) =⇒ int(cl(E)) = int(int(cl(E))) ⊂ int(cl(int(cl(E)))).

Corollary: cl(int(cl(int(E)))) = cl(int(E)).

Proof: We proved last time (problem 2) that cl(Ec) = (int(E))c and we also have

int(Ec) = ((int(Ec))c)c = (cl((Ec)c))c = (cl(E))c.
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Now
int(cl(int(cl(Ec)))) = int(cl(Ec))

gives
(cl(int(cl(int(E)))))c = (cl(int(E)))c

and applying (−)c gives the result.

c

Consider E with some sequence of the cl and int operations applied to it. By (a) we can assume
no operation is applied twice in a row, and by (b) we can assume the sequence of operations has
length less than or equal to 3. Thus the only possibilites are:

E, cl(E), int(E), int(cl(E)), cl(int(E)), cl(int(cl(E))), int(cl(int(E))).

d

Let E = (Q ∩ (−∞,−1]) ∪ {0} ∪ [1, 2) ∪ (2,∞) ⊂ R. Then

cl(E) = (−∞,−1] ∪ {0} ∪ [1,∞), int(E) = (1, 2) ∪ (2,∞)

int(cl(E)) = (−∞,−1) ∪ (1,∞), cl(int(E)) = [1,∞)

cl(int(cl(E))) = (−∞,−1] ∪ [1,∞), int(cl(int(E))) = (1,∞).
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Lemma: Qn is dense in Rn.

Proof: Just use the density of Q in R for each coordinate.

Theorem: Let n ∈ N and let S ∈ Rn be a set such that every point in S is isolated. Then S
is at most countable.

Proof: Fix s ∈ S. Since s is an isolated point, there exists an r̃s > 0 such that Nr̃s(s) ∩ S = {s};
let rs = r̃s/2 and pick an element ts ∈ Nrs(s) ∩Qn. Doing this for each s defines a function

f : S −→ Qn, s 7−→ ts.

We now go about showing that f is injective; since Qn is countable this will show S is at most
countable.

Suppose f(s) = f(s̃) and let t = f(s). Then t = ts = ts̃ ∈ Nrs(s) ∩Nrs̃(s̃). Thus

d(s, s̃) ≤ d(t, s) + d(t, s̃) < rs + rs̃ ≤ max{r̃s, r̃s̃}

so either s ∈ Nr̃s̃(s̃) or s̃ ∈ Nr̃s(s). In either case we obtain s = s̃.
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a

{1, 2, 3} ⊂ R

Open: No
Closed: Yes
Compact: Yes
Interior: ∅
Limit points: ∅
Closure: {1, 2, 3}

b

[−1, 0) ∪ (0, 1] ⊂ R

Open: No
Closed: No
Compact: No
Interior: (−1, 0) ∪ (0, 1)
Limit points: [−1, 1]
Closure: [−1, 1]

c

Q ⊂ R

Open: No
Closed: No
Compact: No
Interior: ∅
Limit points: R
Closure: R

d

R \Q ⊂ R

Open: No
Closed: No
Compact: No
Interior: ∅
Limit points: R
Closure: R
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e

{(x, y) ∈ R2 : y > 0} ⊂ R2

Open: Yes
Closed: No
Compact: No
Interior: {(x, y) : y > 0}
Limit points: {(x, y) : y ≥ 0}
Closure: {(x, y) : y ≥ 0}

f

{(x, y) ∈ R2 : x ∈ [−1, 0) ∪ (0, 1]} ⊂ R2

Open: No
Closed: No
Compact: No
Interior: {(x, y) : x ∈ (−1, 0) ∪ (0, 1)}
Limit points: {(x, y) : x ∈ [−1, 1]}
Closure: {(x, y) : x ∈ [−1, 1]}
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Let
X = {1/n : n ∈ N}

and let

Y = {0} ∪
⋃
n∈N

{(
1

n
− 1

n+ 1

)
X +

1

n+ 1

}
.

Lemma: Y is compact.

Proof: Let {Uα : α ∈ A} be an open cover of Y so that

Y ⊂
⋃
α∈A

Uα.

In particular

0 ∈
⋃
α∈A

Uα

so there is some α0 ∈ A with 0 ∈ Uα0 . Since Uα0 is open, there exists an r0 > 0 with Nr0(0) ⊂ Uα0 .

For each n ∈ N there exists an αn ∈ A such that

1/n ∈ Uαn
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and we can choose rn > 0 so that
Nrn(1/n) ⊂ Uαn

Consider the set

Z = Nr0(0) ∪
b1/r0c⋃
n=1

Nrn(1/n) ⊂ Uα0 ∪
b1/r0c⋃
n=1

Uαn

One can check Y \ Z is finite: you should do this. For each point z ∈ Z \ Y choose αz such that
z ∈ Uαz . Then

{Uα0} ∪ {Uαn : n ∈ {1, . . . , b1/r0c}} ∪ {Uαz : z ∈ Z \ Y }
is the required subcover. Alternatively, one can use Heine-Borel. I feel the argument just given is
the same in difficulty but perhaps it is longer to write down. Y is bounded and to show it is closed
one can write the complement as a union of open intervals.

Lemma: The limit points of Y are {0} ∪X.

Proof: Any other point is isolated and one checks that these are indeed limit points.

{0} ∪X is a countable set so we have answered the question.
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Let K be a compact metric space and ε > 0. Since K is compact, the open cover

{Nε/2(x) : x ∈ K}

has a finite subcover, i.e. there exist x1, . . . , xn ∈ K such that

K =

n⋃
i=1

Nε/2(xi)

Let N = n+ 1. Now suppose we are give N distinct points z1, . . . , zN in K. At least two of them
must lie in the same set of the cover and so there exists an i ∈ {1, . . . n} and two points zr 6= zs
with d(zr, xi) < ε/2 and d(zs, xi) < ε/2. Then

d(zr, zs) ≤ d(zr, xi) + d(zs, xi) < ε

and we’re done.
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Let K be a compact metric space and fix n ∈ N. Since K is compact the open cover

{N1/n(x) : x ∈ K}

has finite subcover, i.e. there exist x
(n)
1 , . . . , x

(n)
rn such that

K =

rn⋃
i=1

N1/n(x
(n)
i ).
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Doing this for each n ∈ N we obtain a countable collection of finite sets{
{x(n)1 , . . . , x(n)rn } : n ∈ N

}
.

Let D be the union of all these sets. D is at most countable since it is a countable union of finite
sets (see problem 6 of last problem set). D is dense and so we are done.

To see the final statement is true let x ∈ K and ε > 0. We can choose n ∈ N such that 1/n < ε
and there is an i ∈ {1, . . . , rn} such that

x ∈ N1/n(x
(n)
i ).

Thus x
(n)
i ∈ N1/n(x) ⊂ Nε(x), which shows D is dense in K, as required.
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