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1

Problem 15 from page 23.

Let a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Cn. Put

A =
n∑

i=1

|aj |2, B =
n∑

j=1

|bj |2 and C =
n∑

j=1

ajbj .

Then it was proved in Theorem 1.35 that

B(AB − |C|2) =
n∑

j=1

|Baj − Cbj |2 ≥ 0.

The Cauchy-Schwarz inequality is
|C|2 ≤ AB.

When B = 0 we have b = 0; thus C = 0, Baj = Cbj for all j, and we have equality. When B 6= 0
we have equality if and only if

n∑
j=1

|Baj − Cbj |2 = 0 ⇐⇒ Baj = Cbj for each j ∈ {1, . . . n}.

Thus, in all cases we have equality in the Cauchy Schwarz inequality if and only if Baj = Cbj for
all j. Now, Baj = Cbj for all j is equivalent to λa = µb for some (λ, µ) ∈ C2 \ {0}. You should
check this.

2

Let X be a metric space and E ⊂ X.
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a

Let p ∈ E◦. By definition, p is an interior point of E, so there exists an r > 0 such that Nr(p) ⊂ E.
If we can show Nr(p) ⊂ E◦ it will follow that p is an interior point of E◦, and thus E◦ is open. But
for any q ∈ Nr(p) we have

Nr−d(p,q)(q) ⊂ Nr(p) ⊂ E,
which implies q ∈ E◦, as required.

(For the above inclusion we use the triangle inequality:

x ∈ Nr−d(p,q)(q) =⇒ d(x, q) < r − d(p, q) =⇒ d(x, p) ≤ d(x, q) + d(p, q) < r =⇒ x ∈ Nr(p).)

b

E is open ⇐⇒ every point of E is an interior point of E ⇐⇒ E ⊂ E◦.

It is clear that we always have E◦ ⊂ E (since a neighborhood of a point contains the point).
Hence, E is open if and only if E◦ = E.

c

Let G ⊂ E and suppose G is open. Given p ∈ G, there exists an r > 0 such that Nr(p) ⊂ G. Since
G ⊂ E we have

Nr(p) ⊂ E
and so p ∈ E◦.

d

By definition, x ∈ E◦ if and only if there exists an r > 0 such that Nr(x) ⊂ E. Thus, x /∈ E◦ if
and only if for all r > 0, Nr(x) ∩ (X \ E) 6= ∅.

Suppose that for all r > 0, Nr(x) ∩ (X \ E) 6= ∅. Then either x ∈ X \ E or x is a limit point of
X \ E, i.e. x ∈ X \ E. Conversely, if x ∈ X \ E, then either x ∈ X \ E or x is a limit point of
X \ E and in either case Nr(x) ∩ (X \ E) 6= ∅, for all r > 0.

e, f

No, in both cases. Let X = R and E = Q.

Claim: E◦ = ∅ and E = X.

Proof: Let x ∈ X. Then for each r > 0, there exists a qr ∈ E with x < qr < x+ r. Thus

qr ∈ (Nr(x) \ {x}) ∩ E 6= ∅

for each r > 0. This says x is a limit point of E and so x ∈ E, giving E = X. Similarly, X \ E = X
and so X \ E◦ = X, which gives E◦ = ∅.

One easily sees E◦ = ∅ and (E)◦ = X and so we have counterexamples.
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3

a

Let x, y ∈ Rn and suppose x · y ≥ 0. We have

0 ≤ (|x|y − |y|x) · (|x|y − |y|x) = 2|x|2|y|2 − 2|x||y|x · y

giving
|x · y||x||y| = x · y|x||y| ≤ |x|2|y|2.

If |x| = 0 then x = 0 and |x · y| = |x||y|. Similarly, if |y| = 0, we have |x · y| = |x||y|. If |x|, |y| 6= 0
then we can divide through by |x||y| to obtain

|x · y| ≤ |x||y|.

Also, in this case we see that we have equality if and only if |x|y = |y|x. In any case, we have
equality if and only if x and y lie on a line through the origin.

If x · y ≤ 0 we can obtain the same result by proceding with (|x|y + |y|x) in place of (|x|y − |y|x).

b

Let a1, . . . , an be positive real numbers. Setting x = (
√
a1, . . . ,

√
an) and y = (1/

√
a1, . . . , 1/

√
an),

the above inequality gives

n2 = |x · y|2 ≤ |x|2|y|2 = (a1 + . . .+ an) (1/a1 + . . .+ 1/an)

Thus the result is immediate and we have equality if and only if M = (
∑
ai) (

∑
1/ai) and x and y

lie on a line through the origin. The latter condition holds if and only if there exists a λ ∈ R such
that

√
ai = λ/

√
ai for all i, i.e. a1 = . . . = an.

4

A set is infinite in the sense of 2.4 if and only if it is in bijection with a proper subset of itself:

a

Lemma: Let ∅ 6= X ⊂ JN . Then X has a maximum element.

Define a function
f : JN −→ JN , x 7−→ (N + 1)− x

One easily checks that f is well-defined. Also f(f(x)) = x so that f is a bijection. Let i be the
least element of f(X) 6= ∅. Then f(i) is the maximum element of X: check this.

Lemma: Let n ∈ N and suppose ∅ 6= X ( Jn. Then there exists a k ∈ N such that k < n
and a bijection

f : Jk −→ X.
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Proof: We induct on n. When n = 1 there is nothing to prove since J1 = {1} has no nonempty
proper subsets. If it makes you feel happier we can start the induction with the n = 2 case: the
only nonempty proper subsets of J2 = {1, 2} are {1} and {2}, which are both in bijection with J1.

Since Jn \X 6= ∅ we may let m = max(JN \X). Define a function

g : X −→ JN−1, i 7−→

{
i when i < m

i− 1 when i > m

One easily checks that g is injective and induces a bijection

X −→ g(X).

If g(X) = JN−1, we are done: we may take f = g. Otherwise, ∅ 6= g(X) ( Jn−1 and an inductive
hypothesis tells us that g(X) is in bijection with some Jk where k < n− 1. Let f be the composite
of g and this bijection.

b

Lemma: Suppose f : Jk −→ Jl is an injection; then k ≤ l.

Proof: We induct on k. When k = 1 the result is clear.

Suppose inductively that whenever f : Jk−1 −→ Jl is an injection, k − 1 ≤ l. Now suppose
we are given an injection f : Jk −→ Jl. Define

g : Jk−1 −→ f(Jk−1), i 7−→ f(i).

Injectivity of f implies that g is injective, too.

Aside: If we draw the maps f and g vertically and the inclusions Jk−1 ⊂ Jk, f(Jk−1) ⊂ Jl
horizontally we obtain the square, which constitutes the right hand section of the diagram below.
By definition, the compositions of the functions as we go around the square in the two different
possible ways are equal; we say the square commutes.

Jk−1 //

g

��

h

{{

Jk

f

��
Jl′ f(Jk−1)

ϕoo // Jl

Suppose for contradiction that f(Jk−1) = Jl. Then there exists an i ∈ Jk−1 such that f(i) = f(k).
This contradicts our assumption that f is injective. Thus, f(Jk−1) is a proper subset of Jl. By (a),
there exists a bijection ϕ : f(Jk−1) −→ Jl′ , where l′ < l. Thus h = ϕ ◦ g, is an injection and our
inductive hypothesis tells us that k − 1 ≤ l′ < l, which gives k ≤ l, as required.

Lemma: Suppose f : Jk −→ Jl is a surjection; then k ≥ l.
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Proof: We induct on l. When l = 1 the result is clear.

Suppose f : Jk −→ Jl is a surjection, where l > 1. Then f−1(Jl−1) 6= ∅ and we can define

g : f−1(Jl−1) −→ Jl−1, i 7−→ f(i).

Surjectivity of f implies that g is surjective, too. Also, because f is surjective, there exists an
i ∈ Jk such that f(i) = l. Then i /∈ f−1(Jl−1) and f−1(Jl−1) is a proper subset of Jk. By (a), there
exists a bijection ϕ : Jk′ −→ f−1(Jl−1), where k′ < k.

Jk′

h $$

ϕ // f−1(Jl−1) //

g

��

Jk

f

��
Jl−1 // Jl

h = g ◦ ϕ is a surjection and by an inductive hypothesis k′ ≥ l − 1. Thus k ≥ l, as required.

Lemma: Suppose f : Jn −→ Jn is injective; then f is surjective.

Proof: Suppose for contradiction that f is not surjective. Then f(Jn) is a proper subset of Jn.
Thus, by (a) we have a bijection ϕ : f(Jn) −→ Jk where k < n.

g : Jn −→ Jk, i 7−→ ϕ(f(i))

is injective. Thus n ≤ k by the first lemma, a contradiction.

c

Let X be finite nonempty subset and ∅ 6= Y ( X. By definition, we have a bijection f : X −→ Jn
for some n ∈ N. ∅ 6= f(Y ) ( Jn and so f(Y ) is in bijection with Jk for some k < n, by (a). A
bijection between X and Y would give a bijection between Jn and Jk, which is not possible, by (b).

d

Define
f : N −→ {n ∈ N : n > 1}, n 7−→ n+ 1.

Then f is a bijection between N and a proper subset of N. By (c), N must be infinite.

e

Since X is infinite X 6= ∅ and we can choose x ∈ X. Define

f1 : J1 −→ X, 1 7−→ x.

Suppose inductively that we have an injection

fn−1 : Jn−1 −→ X.
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Since X is infinite, fn−1 is not a bijection; it must fail to be surjective and we can pick x′ ∈
X \ fn−1(Jn−1). Define

fn : Jn −→ X, i 7−→

{
fn−1(i) when i < n

x′ when i = n

One easily sees that fn is injective.

Define
f : N −→ X, n −→ fn(n)

Suppose n ≤ m and f(n) = f(m). Then fm(n) = fn(n) = f(n) = f(m) = fm(m), so injectivity of
fm tells us that n = m. Thus f is an injection and we’re done.

Conclusion

(c) tells us no finite set can be in bijection with a proper subset of itself. Given an infinite set X,
take an injection f : N −→ X and define

g : X −→ X \ {f(1)}, x 7−→

{
x when x /∈ f(N)

f(n+ 1) when x = f(n)

Injectivity of f means g is well-defined, and one easily checks g is a bijection.

5

a

Let A = {s ∈ S : s < f(s)}.

If A = ∅ then for all s ∈ S we have s ≥ f(s); we must have inf S ≤ f(inf S), so f(inf S) = f(inf S)
and we’re done.

If A 6= ∅ we may set a = supA. Let s ∈ A. Then s ≤ a and so by the definition of A and
monotonicity of f we have s < f(s) ≤ f(a). This means f(a) is an upper bound for A and by the
definition of supremum we have a ≤ f(a).

If a = f(a) we’re done so suppose that a < f(a). Then f(a) is strictly greater than an upper
bound for A, which means f(a) /∈ A. By monotonicity of f we obtain f(a) ≤ f(f(a)). Thus
f(a) = f(f(a)) and we’re done.

b

X = { 1

n
: n ∈ N} ∪ {0}

We have a bijection

f : N −→ X, n 7−→

{
1

n−1 when n > 1

0 when n = 1
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Given a subset S ⊂ N such that S \ {1} 6= ∅ we have sup f(S) = f(min(S \ {1})) ∈ X; also,
sup{0} = 0 ∈ X. If T ⊂ X is finite then certainly the inf is obtained. If T ⊂ X is infinite then
inf T = 0 ∈ X.

c

[0, 1] = {x ∈ R : 0 ≤ x ≤ 1}

Any nonempty subset of [0, 1] has 0 as a lower bound and 1 as an upper bound and so has an
infimum and supremum in [0, 1].

6

First note that the set of all algebraic integers contains the integers, and so is an infinite set.

Let S be the set

N×
∞∏
n=0

Z = {(n, a0, a1, a2, . . .) : n ∈ N and aj ∈ Z for all j ∈ N ∪ {0}}

Let SN be the subset

{(n, a0, a1, . . . ) ∈ S : n+ |a0|+ |a1|+ . . . |an| = N, n < N, aj = 0 for j > n}

The set of algebraic numbers is equal to

∞⋃
N=1

⋃
(n,a0,a1,...)∈SN

{z ∈ C : a0z
n + a1z

n−1 + . . .+ an−1z + an = 0}

We are told in the question that each {z ∈ C : a0z
n + a1z

n−1 + . . .+ an−1z + an = 0} has size ≤ n
and each SN has size ≤ (2N + 1)N+1. Thus⋃

(n,a0,a1,...)∈SN

{z ∈ C : a0z
n + a1z

n−1 + . . .+ an−1z + an = 0}

is finite for each N .

The answer now follows, since a countable union of finite sets is at most countable, for ifA1, A2, A3, . . .
is a sequence of finite sets we can define a surjection by

f : N −→
∞⋃
k=1

Ak, i 7−→ fj(i−
j−1∑
k=1

|Ak|), when

j−1∑
k=1

|Ak| < i ≤
j∑

k=1

|Ak|

after choosing bijections fj : J|Aj | −→ Aj for each j ∈ N.
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