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Let m and n be positive integers with no common factor. Prove that if
√
m/n is rational, then m

and n are both perfect squares, that is to say there exist integers p and q such that m = p2 and
n = q2. (This is proved in Proposition 9 of Book X of Euclids Elements).

Assume
√
m/n is rational. Then there exist positive integers M and N with no common fac-

tor such that
√

m/n = M/N and so mN2 = nM2.

Claim: M2 divides m and N2 divides n.

Assume the claim for now. Then

m = M2m′ and n = N2n′ for some m′ and n′.

Substituting we obtain M2m′N2 = N2n′M2 which gives m′ = n′. m′ = n′ divides m and n so
m′ = n′ = 1 and we have shown m and n are perfect squares.

Proof of claim: We show that M2 divides m; the argument that N2 divides n is identical. Write
M as a product of primes p1 · · · pr and note that no pi divides N . Assume inductively that p21 · · · p2t
divides m. Then

p2t+1

∣∣∣ M2

p21 · · · p2t

∣∣∣ m

p21 · · · p2t
N2

Since pt+1 does not divide N2 we see

p2t+1

∣∣∣ m

p21 · · · p2t
, which gives p21 · · · p2t+1

∣∣∣ m.

The inductive hypothesis holds when t = 0; the empty product is 1. Thus, by induction p21 · · · p2r =
M2 divides m.
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Problem 6 from page 22.

Fix b > 1

a
m

n
=

p

q
=⇒ mq = pn

so that
((bm)1/n)nq = (bm)q = bmq = bpn = (bp)n = ((bp)1/q)nq.

By uniqueness of nqth roots
(bm)1/n = (bp)1/q.

b

Let r, s ∈ Q. Write r = m/n and s = p/q where m, p ∈ Z and n, q ∈ N. Since nq is an integer we
know that

(brbs)nq = (br)nq(bs)nq

but
(br)nq = ((bm)1/n)nq = (bm)q = bmq

and similarly (bs)nq = bnp. Since mq and np are integers we can conclude

(brbs)nq = bmqbnp = bmq+np

Since there is a unique positive real number y such that ynq = bmq+np, we obtain

brbs = (bmq+np)1/nq = b
mq+np

nq = br+s.

c

For x ∈ R let
B(x) = {bt : t ∈ Q and t ≤ x}.

Suppose we are given r ∈ Q. If y ∈ B(r) then we can write y = bt, where t ∈ Q and t ≤ r. Since
t, r ∈ Q we immediately obtain

y = bt ≤ br

which shows br is an upper bound for B(r). Since br ∈ B(r) it is clear that it is the least upper
bound and we conclude

br = supB(r).

Perhaps one needs to check that for t, r ∈ Q with t ≤ r one does actually have bt ≤ br. By (b) it
suffices to show that for s ∈ Q with s ≥ 0 we have bs ≥ 1. Writing s = m/n for m ∈ N ∪ {0},
n ∈ N, we have bm ≥ 1, since b > 1; by the contapositive of the statement “0 ≤ bm/n < 1 implies
bm = (bm/n)n < 1,” we are done.
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The point regarding the deduction is as follows. Given x ∈ R the set B(x) is bounded above
and so supB(x) is a number, which exists for all x ∈ R and we propose setting bx = supB(x).
However, we already have a definition for br when r is rational; we have just checked that our new
definiton does not clash with our old one.

d

Let x, y ∈ R. Suppose r, s ∈ Q, r ≤ x and s ≤ y. Then

r + s ≤ x + y =⇒ br+s ∈ B(x + y) =⇒ br+s ≤ bx+y.

Thus

br ≤ bx+y

bs
.

Since this holds for all r ∈ Q with r ≤ x, bx+y

bs is an upper bound for B(x). Thus

bx ≤ bx+y

bs
=⇒ bs ≤ bx+y

bx
.

Since this holds for all s ∈ Q with s ≤ y we have

by ≤ bx+y

bx
=⇒ bxby ≤ bx+y.

Suppose for contradiction that bxby < bx+y. Then bxby is not an upper bound for B(x + y) and
there exists a t ∈ Q with t ≤ x + y and bxby < bt. By the argument of 3(e) we can assume that
t < x + y. (This is valid because t is rational and so we do not use what we are supposed to be
proving!)

Choose r, s ∈ Q with r ≤ x, s ≤ y and t ≤ r + s ≤ x + y (we’ll show how to do this below).
Since r ≤ x and s ≤ y we have br ≤ bx and bs ≤ by, which gives brbs ≤ bxby. Thus

bxby < bt ≤ br+s = brbs ≤ bxby,

a contradiction, and we have proved bxby = bx+y.

To choose r and s as above proceed as follows. Choose N ∈ N such that N(x + y − t) ≥ 1
and pick r, s ∈ Q such that x − 1

2N ≤ r ≤ x and y − 1
2N ≤ s ≤ y. (Notice that we could have

imposed strict inequalities everywhere.)

3

Problem 7 from page 22.

Fix b > 1, y > 0 and let n be a positive integer.
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a

bn − 1 = (bn−1 + bn−2 + . . . + b + 1)(b− 1) ≥ n(b− 1).

b

Replacing b with b1/n we obtain
b− 1 ≥ n(b1/n − 1).

This is permissable since b > 1 implies b1/n > 1.

c

Let t > 1 and n > (b− 1)/(t− 1). Then

n(t− 1) > b− 1 ≥ n(b1/n − 1).

Thus t > b1/n.

d

Let w be a real number such that bw < y. Then t = yb−w > 1. Choose n ∈ N such that
n > (b− 1)/(t− 1). Then

b1/n < t = yb−w =⇒ bw+1/n < w.

e

Let w be a real number such that bw > y. Then t = bw/y > 1. Choose n ∈ N such that
n > (b− 1)/(t− 1). Then

b1/n < t = bw/y =⇒ y < bw−1/n.

f

Let A = {w : bw < y} and let x = supA.

Suppose that bx < y. By d) we can choose n so that bx+1/n < y. Then x + 1/n ∈ A and x
is not an upper bound for A, a contradiction.

Suppose that bx > y. By e) we can choose n so that bx−1/n > y. Given w ∈ A

bw < y < bx−1/n.

Thus w < x− 1/n. This means x− 1/n is an upper bound for A, meaning that x is not the least
upper bound, a contradiction.

Thus bx = y.

This all sounds good but really we need to prove that bw < bx−1/n does indeed give w < x− 1/n.
First we show that if a ∈ R and ba > 1 then a > 0. Well, by definition of ba in 6) there exists
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an integer m ∈ Z and positive integer n ∈ N such that m/n ≤ a and bm/n > 1; 1 is not an upper
bound for the set of numbers bt, where t is rational and t ≤ a. Then bm = (bm/n)n > 1, which gives
m > 0. Thus a ≥ m/n > 0. Now bw < bx−1/n implies bx−1/n−w > 1, which gives x− 1/n− w > 0
so x− 1/n > w as we claimed.

g

Suppose x′ > x. Then x′ − x > 0. We can find a rational q ∈ Q such that x′ − x > q > 0. Then
bx−x

′ ≥ bq by definition and bq > 1. Thus bx−x
′
> 1 and bx > bx

′
. In particular, if x 6= x′ then

bx 6= bx
′
, so the x constructed above must be unique.

4

Prove that no order can be defined in the complex field that turns it into an ordered field.

Suppose that such an order exists. We know that in any ordered field squares are greater than or
equal to zero. Since i2 = −1, this means that 0 ≤ −1. Thus

1 = 0 + 1 ≤ −1 + 1 = 0 ≤ 1,

which implies 0 = 1, a contradiction.

5

Let R be the set of real numbers and suppose f : R −→ R is a function such that for all real
numbers x and y the following two equations hold

f(x + y) = f(x) + f(y) (1)

f(xy) = f(x)f(y) (2)

Claim: f(x) = 0 for all x or f(x) = x for all x.

a

Setting x = 1 and y = 0 in equation (1) gives

f(1) = f(1) + f(0) so that f(0) = 0.

Setting x = y = 1 in equation (2) gives f(1) = f(1)2. Thus f(1) is equal to 0 or 1 as we may see
by solving the equation x− x2 = x(1− x) = 0.

Remark: If I did not have to answer all parts of the question fully and I just wanted to prove
the claim as quickly as possible I would proceed by noting that f(1) = 0 gives

f(x) = f(1)f(x) = 0 for all x ∈ R.

From this moment on I could then assume f(1) = 1.
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b

By a) we have
f(0) = 0 = 0f(1).

Also,
f(x) + f(−x) = f(x− x) = f(0) = 0 so that f(−x) = −f(x) for all x ∈ R.

In particular, f(−1) = −f(1).

Let n ∈ Z and assume that f(n) = nf(1). Then

f(n + 1) = f(n) + f(1) = nf(1) + f(1) = (n + 1)f(1)

and
f(n− 1) = f(n) + f(−1) = nf(1)− f(1) = (n− 1)f(1).

By induction f(n) = nf(1) for all n ∈ Z.

For n,m ∈ Z, m 6= 0

f
( n

m

)
mf(1) = f

( n

m

)
f(m) = f(n) = nf(1)

and so
f
( n

m

)
= f

( n

m

)
f(1) =

n

m
f(1).

Thus f(q) = qf(1) for all q ∈ Q and by a) either f(q) = 0 for all q ∈ Q or f(q) = q for all q ∈ Q.

c

Suppose x ≥ 0. Then there exists a y ∈ R such that y2 = x and

f(x) = f(y2) = f(y)2 ≥ 0.

Thus

x ≥ y =⇒ x− y ≥ 0 =⇒ f(x)− f(y) = f(x) + f(−y) = f(x− y) ≥ 0 =⇒ f(x) ≥ f(y).

d

Suppose f(1) = 0. Given any x ∈ R we can find p, q ∈ Q such that

p ≤ x ≤ q.

Then
0 = f(p) ≤ f(x) ≤ f(q) = 0 =⇒ f(x) = 0.

Alternatively, we proceed as remarked in a).

Suppose f(1) = 1. Let x ∈ R and n ∈ N. Then there exist p, q ∈ Q such that

x− 1

n
≤ p ≤ x ≤ q ≤ x +

1

n
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and so

x− 1

n
≤ p = f(p) ≤ f(x) ≤ f(q) = q ≤ x +

1

n
.

So for all x ∈ R and all n ∈ N we have

x− 1

n
≤ f(x) ≤ x +

1

n

which gives f(x) = x for all x ∈ R.
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