18.100B and 18.100C Fall 2011

Problem Set 7

Due November 3rd at 4 pm in room 2-108.

Hand in parts 1, 2 and 3 separately. Put your name and whether you are registered for 18.100B or 18.100C on each part.

Part 1

- 1. Let X and Y be metric spaces and $\underline{f}: X \to Y$ a function. Prove that f is continuous if and only if $f(\overline{E}) \subset \overline{f(E)}$ for any subset $E \subset X$.
- 2. Problem 10 from page 99.

Part 2

- 3. Problem 14 from page 100.
- 4. Let $f : \mathbb{R} \to \mathbb{R}$ be continuous and suppose that $\lim_{x \to +\infty} f(x)$ and $\lim_{x \to -\infty} f(x)$ both exist and are finite. Prove that f is uniformly continuous.

Part 3

- 5. Let K be a compact metric space with metric d and suppose $f: K \to K$ is distance preserving, meaning that d(f(x), f(y)) = d(x, y) for all $x, y \in K$. Prove that f(K) = K.
- 6. Problem 1 from page 114.