Problem Set 2

Due September 22nd at 4 pm in room 2-108.

Hand in parts 1, 2 and 3 separately. Put your name and whether you are registered for 18.100B or 18.100C on each part.

Part 1

- 1. Problem 15 from page 23. Students registered for 18.100C should write this problem up in LaTeX.
- 2. Problem 9 from page 43.

Part 2

- 3. (a) Give an alternate proof that $|x \cdot y| \leq |x||y|$ for any $x, y \in \mathbb{R}^n$ and for any $n \in \mathbb{N}$ by taking the inner product of the vector |x|y |y|x with itself and using the fact that this is nonnegative.
 - (b) Let a_1, \ldots, a_n be positive real numbers. Prove that if

$$(a_1 + \dots + a_n)\left(\frac{1}{a_1} + \dots + \frac{1}{a_n}\right) \le M$$

for some M > 0, then $n \leq \sqrt{M}$. When does equality hold?

- 4. Prove that a set is infinite in the sense of §2.4 if and only if it is in bijection with a proper subset of itself by proving the following statements:
 - (a) If X is a proper subset of J_n for some $n \in \mathbb{N}$, then either X is empty or X is in bijection with J_k for some $k \in \mathbb{N}$, k < n.
 - (b) If $f: J_k \to J_\ell$ is an injection, then $k \leq \ell$. Moreover, $k = \ell$ if and only if f is also a surjection.
 - (c) No finite set can be in bijection with a proper subset of itself.
 - (d) \mathbb{N} is infinite.
 - (e) If X is infinite, there is an injection $f \colon \mathbb{N} \to X$.

Finally, use (c), (d), and (e) to conclude.

Part 3

- 5. Let S be a nonempty ordered set with the property that every nonempty subset of S has both a least upper bound in S and a greatest lower bound in S.
 - (a) Prove that if $f: S \to S$ satisfies $f(x) \leq f(y)$ for any $x, y \in S$ with $x \leq y$, then there exists an $x_0 \in S$ for which $f(x_0) = x_0$.
 - (b) Give an example of an infinite subset of \mathbb{Q} with this property.
 - (c) Give an example of an uncountable subset of \mathbb{R} with this property.
- 6. Problem 2 from page 43. You may use without proof the fact that if $a_0, \ldots a_n$ are integers which are not all zero, then there are at most n complex solutions to $a_0 z^n + a_1 z^{n-1} + \cdots + a_n = 0$.