Second midterm review sheet

The second midterm covers all the material from chapters 3-5, and you may use results from chapters 1-5 without proof. Most of the midterm will consist of problems from this list. You will not be asked to reprove theorems from the book.

1. Evaluate

$$\lim_{n\to\infty}\frac{\sqrt[n]{n!}}{n}.$$

2. Let p > 1. Evaluate

$$\frac{\sum_{n=1}^{\infty} n^{-p}}{\sum_{n=1}^{\infty} (-1)^n n^{-p}}.$$

- 3. Let A > 0, and suppose $\sum_{n=1}^{\infty} a_n = A$, and $a_n > 0$ for all $n \in \mathbb{N}$. Find the possible values of $\sum_{n=1}^{\infty} a_n^2$.
- 4. Let $\sum b_n$ be a convergent series of real numbers, and let $(a_n)_{n \in \mathbb{N}}$ be bounded below. Prove that if

$$a_{n+1} \le a_n + b_n,$$

then $(a_n)_{n \in \mathbb{N}}$ converges.

- 5. Problem 18 from page 100.
- 6. Problem 25 from page 102.
- 7. Let X and Y be metric spaces and f a function from X to Y. Prove that the following are equivalent.
 - (a) f is continuous.
 - (b) If $(p_n)_{n \in \mathbb{N}}$ is a convergent sequence in X, then the sequence $(f(p_n))_{n \in \mathbb{N}}$ is convergent in Y.
 - (c) If $(p_n)_{n \in \mathbb{N}}$ is a convergent sequence in X, then the sequence $(f(p_n))_{n \in \mathbb{N}}$

is convergent in Y and

$$\lim_{n \to \infty} f(p_n) = f\left(\lim_{n \to \infty} p_n\right).$$

- 8. Let K be a compact metric space and $A \subset K$. Prove that A is compact if and only if for every continuous function $f: K \to \mathbb{R}$, the restriction of f to A attains a maximum on A.
- 9. Let $f: \mathbb{R} \to \mathbb{R}$ be continuous, and suppose that

$$\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = +\infty.$$

Prove that f attains a minimum on \mathbb{R} .

- 10. Let $f : \mathbb{R} \to \mathbb{R}$ be uniformly continuous with f(0) = 0. Prove that there exists M > 0 such that $|f(x)| \le 1 + M|x|$ for all $x \in \mathbb{R}$.
- 11. Let $f : \mathbb{R} \to \mathbb{R}$ be continuous and periodic with period 1 (meaning that it obeys f(x+1) = f(x) for all $x \in \mathbb{R}$)
 - (a) Prove that f is bounded and attains both a maximum and a minimum on \mathbb{R} .
 - (b) Prove that f is uniformly continuous on \mathbb{R} .
 - (c) Prove that for any $a \in \mathbb{R}$ there is $x_0 \in \mathbb{R}$ such that $f(x_0 + a) = f(x_0)$.
- 12. Let $f \colon \mathbb{R} \to \mathbb{R}$ be continuous. Prove that the set

$$\{\alpha \in \mathbb{R} \colon \exists (x_n)_{n \in \mathbb{N}} \text{ with } \lim_{n \to \infty} x_n = \infty, \lim_{n \to \infty} f(x_n) = \alpha \}$$

is connected.

- 13. Problem 2 from page 114.
- 14. Problem 6 from page 114
- 15. Problem 11 from page 115.
- 16. Problem 14 from page 115.