Final exam review sheet

Most of the final will consist of problems from this list.

- 1. Prove that \mathbb{R}^2 is not the union of a countable family of lines.
- 2. Problem 10 from page 44.
- 3. Let $E \subset \mathbb{R}$ be uncountable.
 - (a) Prove that E has uncountably many limit points.
 - (b) Prove that there exists $x \in \mathbb{R}$ such that $E \cap (-\infty, x)$ and $E \cap (x, \infty)$ are both uncountable.
- 4. Let X be a metric space and $(K_n)_{n \in \mathbb{N}}$ a sequence of nonempty compact subsets of X with $K_{n+1} \subset K_n$ for all $n \in \mathbb{N}$. Prove that if U is an open set with $\bigcap_{n=1}^{\infty} K_n \subset U$, then there exists $N \in \mathbb{N}$ such that $K_N \subset U$.
- 5. Problem 8 from page 99.
- 6. Let $f: [0,1] \times [0,1] \to \mathbb{R}$ be continuous, and let $g: [0,1] \to \mathbb{R}$ be defined by

$$g(x) = \max\{f(x, y) \colon y \in [0, 1]\}.$$

Prove that g is continuous.

- 7. Let K be a nonempty compact metric space with metric d, and suppose $f: K \to K$ obeys d(f(x), f(y)) < d(x, y) for all $x, y \in K$ with $x \neq y$. Prove that there is a unique $x_0 \in K$ with $f(x_0) = x_0$.
- 8. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a continuous function such that $f^{-1}(E) \subset \mathbb{R}^2$ is bounded whenever $E \subset \mathbb{R}$ is bounded. Prove that f attains either a maximum or a minimum value.
- 9. Let $f: \mathbb{R} \to \mathbb{R}$ be a nonconstant, nondecreasing function. Prove that for any R > 0 there exist $a \in \mathbb{R}$ and c > 0 such that

$$f(a+x) - f(a-x) \ge cx,$$

for all $x \in [-R, R]$.

- 10. Let X be a metric space. A subset $E \subset X$ is *path-connected* if for every $p, q \in E$, there is a continuous function $c: [0,1] \to E$ with c(0) = p and c(1) = q.
 - (a) Prove that path-connected sets are connected.
 - (b) Prove that open connected sets are path-connected.
 - (c) Give an example of a subset of \mathbb{R}^2 which is connected but not path-connected.
- 11. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function satisfying $|f(x) f(y)| \ge |x y|$ for all $x, y \in \mathbb{R}$. Prove that f is surjective.
- 12. Problem 3 from page 114.
- 13. Let $f: (-1,1) \to \mathbb{R}$ be differentiable, and suppose $f(x)/x^2$ has a finite limit as $x \to 0$. Does it follow that f''(0) exists?
- 14. Let $f: (0, \infty) \to (0, \infty)$ be twice differentiable with f'' is bounded and continuous, and such that $f'(x) \leq 0$ for all x > 0. Prove that $\lim_{x \to \infty} f'(x) = 0$
- 15. Let $f: [0,1] \to \mathbb{R}$ be differentiable with continuous derivative, and with f(0) = 0. Prove that

$$\sup_{0 \le x \le 1} |f(x)| \le \sqrt{\int_0^1 (f'(x))^2 dx}.$$

16. Let K be a compact metric space, and let $\{f_n\}_{n\in\mathbb{N}}$ be a uniformly bounded equicontinuous family of functions $K \to \mathbb{R}$. For each $n \in \mathbb{N}$, define $g_n \colon K \to \mathbb{R}$ by

$$g_n(x) = \max\{f_1(x), \dots, f_n(x)\}.$$

Prove that the sequence $(g_n)_{n \in \mathbb{N}}$ converges uniformly.

- 17. Let $(g_n)_{n \in \mathbb{N}}$ be a sequence of differentiable functions $[0, 1] \to \mathbb{R}$ such that the derivatives $\{(g'_n)\}_{n \in \mathbb{N}}$ are uniformly bounded.
 - (a) Show that there is a sequence of real numbers $(c_n)_{n \in \mathbb{N}}$ such that the sequence of functions $(h_n)_{n \in \mathbb{N}}$ defined by $h_n(x) = g_n(x) c_n$ has a uniformly convergent subsequence.

- (b) Show that if $(\int_0^1 g_n dx)_{n \in \mathbb{N}}$ is a bounded sequence of real numbers, then g_n has a uniformly convergent subsequence.
- 18. Let $(f_n)_{n\in\mathbb{N}}$ be a sequence of functions $\mathbb{R} \to \mathbb{R}$ which converges uniformly to a function $f: \mathbb{R} \to \mathbb{R}$, and such that $c_n = \lim_{x\to\infty} f_n(x)$ exists for each $n \in \mathbb{N}$. Prove that $\lim_{n\to\infty} c_n$ and $\lim_{x\to\infty} f(x)$ both exist and are equal.
- 19. Let $N \in \mathbb{N}$. Prove that if f is a continuous function $[0,1] \to \mathbb{R}$ satisfying

$$\int_0^1 x^n f(x) dx = 0$$

for all $n \in \mathbb{N}$ with $n \ge N$, then $f \equiv 0$.

- 20. Problem 12 from page 140 and problem 22 from page 169.
- 21. Problem 27 from page 119 and problem 25 from page 170.

22. For
$$n \in \mathbb{N}$$
, let $I_n = \int_0^{\pi} \sin^n x dx$.

- (a) Evaluate I_n for each $n \in \mathbb{N}$.
- (b) Prove that $(I_n)_{n \in \mathbb{N}}$ is a strictly decreasing sequence of positive terms.
- (c) Evaluate the infinite product $\frac{1}{2} \cdot \frac{3}{2} \cdot \frac{3}{4} \cdot \frac{5}{4} \cdot \frac{5}{6} \cdots$.
- 23. Problem 5 from page 197.
- 24. Problem 6 from page 197.
- 25. Problem 13 from page 198.